These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 25402567)

  • 1. A smart "strider" can float on both water and oils.
    Qin L; Zhao J; Lei S; Pan Q
    ACS Appl Mater Interfaces; 2014 Dec; 6(23):21355-62. PubMed ID: 25402567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioinspired oil strider floating at the oil/water interface supported by huge superoleophobic force.
    Liu X; Gao J; Xue Z; Chen L; Lin L; Jiang L; Wang S
    ACS Nano; 2012 Jun; 6(6):5614-20. PubMed ID: 22607241
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlled Movement of a Smart Miniature Submarine at Various Interfaces.
    Chu Y; Qin L; Zhen L; Pan Q
    ACS Appl Mater Interfaces; 2018 Jul; 10(29):24899-24904. PubMed ID: 29943972
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomimetic "water strider leg" with highly refined nanogroove structure and remarkable water-repellent performance.
    Bai F; Wu J; Gong G; Guo L
    ACS Appl Mater Interfaces; 2014 Sep; 6(18):16237-42. PubMed ID: 25157582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superhydrophobic cuprous oxide nanostructures on phosphor-copper meshes and their oil-water separation and oil spill cleanup.
    Kong LH; Chen XH; Yu LG; Wu ZS; Zhang PY
    ACS Appl Mater Interfaces; 2015 Feb; 7(4):2616-25. PubMed ID: 25590434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. pH-Induced Switchable Superwettability of Efficient Antibacterial Fabrics for Durable Selective Oil/Water Separation.
    Fu Y; Jin B; Zhang Q; Zhan X; Chen F
    ACS Appl Mater Interfaces; 2017 Sep; 9(35):30161-30170. PubMed ID: 28805055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Smart candle soot coated membranes for on-demand immiscible oil/water mixture and emulsion switchable separation.
    Li J; Zhao Z; Li D; Tian H; Zha F; Feng H; Guo L
    Nanoscale; 2017 Sep; 9(36):13610-13617. PubMed ID: 28876001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. pH-induced reversible wetting transition between the underwater superoleophilicity and superoleophobicity.
    Cheng Z; Lai H; Du Y; Fu K; Hou R; Li C; Zhang N; Sun K
    ACS Appl Mater Interfaces; 2014 Jan; 6(1):636-41. PubMed ID: 24319986
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Smart Fiber Membrane for pH-Induced Oil/Water Separation.
    Li JJ; Zhou YN; Luo ZH
    ACS Appl Mater Interfaces; 2015 Sep; 7(35):19643-50. PubMed ID: 26293145
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioinspired aquatic microrobot capable of walking on water surface like a water strider.
    Zhang X; Zhao J; Zhu Q; Chen N; Zhang M; Pan Q
    ACS Appl Mater Interfaces; 2011 Jul; 3(7):2630-6. PubMed ID: 21650460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Switchable Pickering Emulsions Stabilized by Awakened TiO2 Nanoparticle Emulsifiers Using UV/Dark Actuation.
    Zhang Q; Bai RX; Guo T; Meng T
    ACS Appl Mater Interfaces; 2015 Aug; 7(33):18240-6. PubMed ID: 26258618
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photoinduced underwater superoleophobicity of TiO2 thin films.
    Sawai Y; Nishimoto S; Kameshima Y; Fujii E; Miyake M
    Langmuir; 2013 Jun; 29(23):6784-9. PubMed ID: 23701360
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reversible Wettability between Underwater Superoleophobicity and Superhydrophobicity of Stainless Steel Mesh for Efficient Oil-Water Separation.
    Wang J; Xu J; Chen G; Lian Z; Yu H
    ACS Omega; 2021 Jan; 6(1):77-84. PubMed ID: 33458461
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simple synthesis of smart magnetically driven fibrous films for remote controllable oil removal.
    Wu J; Wang N; Zhao Y; Jiang L
    Nanoscale; 2015 Feb; 7(6):2625-32. PubMed ID: 25581419
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultraviolet-driven switchable superliquiphobic/superliquiphilic coating for separation of oil-water mixtures and emulsions and water purification.
    Li F; Kong W; Bhushan B; Zhao X; Pan Y
    J Colloid Interface Sci; 2019 Dec; 557():395-407. PubMed ID: 31536918
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Under-Oil Switchable Superhydrophobicity to Superhydrophilicity Transition on TiO
    Kang H; Liu Y; Lai H; Yu X; Cheng Z; Jiang L
    ACS Nano; 2018 Feb; 12(2):1074-1082. PubMed ID: 29338192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoresponsive liquid marbles and dry water.
    Tan TT; Ahsan A; Reithofer MR; Tay SW; Tan SY; Hor TS; Chin JM; Chew BK; Wang X
    Langmuir; 2014 Apr; 30(12):3448-54. PubMed ID: 24617527
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mussel-inspired direct immobilization of nanoparticles and application for oil-water separation.
    Zhu Q; Pan Q
    ACS Nano; 2014 Feb; 8(2):1402-9. PubMed ID: 24404889
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Why superhydrophobicity is crucial for a water-jumping microrobot? Experimental and theoretical investigations.
    Zhao J; Zhang X; Chen N; Pan Q
    ACS Appl Mater Interfaces; 2012 Jul; 4(7):3706-11. PubMed ID: 22724498
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Underwater superoleophilic to superoleophobic wetting control on the nanostructured copper substrates.
    Cheng Z; Lai H; Du Y; Fu K; Hou R; Zhang N; Sun K
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):11363-70. PubMed ID: 24083992
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.