BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 25402870)

  • 1. Nox-4 and progressive kidney disease.
    Thallas-Bonke V; Jandeleit-Dahm KA; Cooper ME
    Curr Opin Nephrol Hypertens; 2015 Jan; 24(1):74-80. PubMed ID: 25402870
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NADPH oxidase 5 and renal disease.
    Holterman CE; Thibodeau JF; Kennedy CR
    Curr Opin Nephrol Hypertens; 2015 Jan; 24(1):81-7. PubMed ID: 25415612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NADPH oxidase: A membrane-bound enzyme and its inhibitors in diabetic complications.
    Laddha AP; Kulkarni YA
    Eur J Pharmacol; 2020 Aug; 881():173206. PubMed ID: 32442539
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nox and renal disease.
    Holterman CE; Read NC; Kennedy CR
    Clin Sci (Lond); 2015 Apr; 128(8):465-81. PubMed ID: 25630236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NADPH oxidases in the kidney.
    Gill PS; Wilcox CS
    Antioxid Redox Signal; 2006; 8(9-10):1597-607. PubMed ID: 16987014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of NADPH oxidase prevents advanced glycation end product-mediated damage in diabetic nephropathy through a protein kinase C-alpha-dependent pathway.
    Thallas-Bonke V; Thorpe SR; Coughlan MT; Fukami K; Yap FY; Sourris KC; Penfold SA; Bach LA; Cooper ME; Forbes JM
    Diabetes; 2008 Feb; 57(2):460-9. PubMed ID: 17959934
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular mechanisms of hypertension: role of Nox family NADPH oxidases.
    Sedeek M; Hébert RL; Kennedy CR; Burns KD; Touyz RM
    Curr Opin Nephrol Hypertens; 2009 Mar; 18(2):122-7. PubMed ID: 19430333
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidative stress and advanced glycation in diabetic nephropathy.
    Coughlan MT; Mibus AL; Forbes JM
    Ann N Y Acad Sci; 2008 Apr; 1126():190-3. PubMed ID: 18448815
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reactive oxygen species, Nox and angiotensin II in angiogenesis: implications for retinopathy.
    Wilkinson-Berka JL; Rana I; Armani R; Agrotis A
    Clin Sci (Lond); 2013 May; 124(10):597-615. PubMed ID: 23379642
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Benazepril, an angiotensin-converting enzyme inhibitor, alleviates renal injury in spontaneously hypertensive rats by inhibiting advanced glycation end-product-mediated pathways.
    Liu XP; Pang YJ; Zhu WW; Zhao TT; Zheng M; Wang YB; Sun ZJ; Sun SJ
    Clin Exp Pharmacol Physiol; 2009 Mar; 36(3):287-96. PubMed ID: 19018797
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nox enzymes, ROS, and chronic disease: an example of antagonistic pleiotropy.
    Lambeth JD
    Free Radic Biol Med; 2007 Aug; 43(3):332-47. PubMed ID: 17602948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NADPH oxidases, reactive oxygen species, and hypertension: clinical implications and therapeutic possibilities.
    Paravicini TM; Touyz RM
    Diabetes Care; 2008 Feb; 31 Suppl 2():S170-80. PubMed ID: 18227481
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential vascular functions of Nox family NADPH oxidases.
    Brandes RP; Schröder K
    Curr Opin Lipidol; 2008 Oct; 19(5):513-8. PubMed ID: 18769233
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Normalizing NADPH oxidase contributes to attenuating diabetic nephropathy by the dual endothelin receptor antagonist CPU0213 in rats.
    Xu M; Dai DZ; Dai Y
    Am J Nephrol; 2009; 29(3):252-6. PubMed ID: 18802327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Involvement of renal cytochromes P450 and arachidonic acid metabolites in diabetic nephropathy.
    Eid S; Abou-Kheir W; Sabra R; Daoud G; Jaffa A; Ziyadeh FN; Roman L; Eid AA
    J Biol Regul Homeost Agents; 2013; 27(3):693-703. PubMed ID: 24152838
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NOX isoforms and reactive oxygen species in vascular health.
    Touyz RM; Briones AM; Sedeek M; Burger D; Montezano AC
    Mol Interv; 2011 Feb; 11(1):27-35. PubMed ID: 21441119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NOXious signaling in pain processing.
    Kallenborn-Gerhardt W; Schröder K; Geisslinger G; Schmidtko A
    Pharmacol Ther; 2013 Mar; 137(3):309-17. PubMed ID: 23146925
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The signaling pathway of NADPH oxidase and its role in glomerular diseases.
    Mao S; Huang S
    J Recept Signal Transduct Res; 2014 Feb; 34(1):6-11. PubMed ID: 24156279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The NADPH oxidase family and its inhibitors.
    Kleniewska P; Piechota A; Skibska B; Gorąca A
    Arch Immunol Ther Exp (Warsz); 2012 Aug; 60(4):277-94. PubMed ID: 22696046
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complement-dependent NADPH oxidase enzyme activation in renal ischemia/reperfusion injury.
    Simone S; Rascio F; Castellano G; Divella C; Chieti A; Ditonno P; Battaglia M; Crovace A; Staffieri F; Oortwijn B; Stallone G; Gesualdo L; Pertosa G; Grandaliano G
    Free Radic Biol Med; 2014 Sep; 74():263-73. PubMed ID: 25017967
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.