BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 25402970)

  • 21. Role of the N-terminal domain of the chaperone ClpX in the recognition and degradation of lambda phage protein O.
    Thibault G; Houry WA
    J Phys Chem B; 2012 Jun; 116(23):6717-24. PubMed ID: 22360725
    [TBL] [Abstract][Full Text] [Related]  

  • 22. AAA+ molecular machines: firing on all cylinders.
    Ades SE
    Curr Biol; 2006 Jan; 16(2):R46-8. PubMed ID: 16431356
    [No Abstract]   [Full Text] [Related]  

  • 23. Communication between ClpX and ClpP during substrate processing and degradation.
    Joshi SA; Hersch GL; Baker TA; Sauer RT
    Nat Struct Mol Biol; 2004 May; 11(5):404-11. PubMed ID: 15064753
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The flexible attachment of the N-domains to the ClpA ring body allows their use on demand.
    Cranz-Mileva S; Imkamp F; Kolygo K; Maglica Z; Kress W; Weber-Ban E
    J Mol Biol; 2008 Apr; 378(2):412-24. PubMed ID: 18358489
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optimal efficiency of ClpAP and ClpXP chaperone-proteases is achieved by architectural symmetry.
    Maglica Z; Kolygo K; Weber-Ban E
    Structure; 2009 Apr; 17(4):508-16. PubMed ID: 19368884
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Escherichia coli ClpA molecular chaperone self-assembles into tetramers.
    Veronese PK; Stafford RP; Lucius AL
    Biochemistry; 2009 Oct; 48(39):9221-33. PubMed ID: 19650643
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Asymmetric interactions of ATP with the AAA+ ClpX6 unfoldase: allosteric control of a protein machine.
    Hersch GL; Burton RE; Bolon DN; Baker TA; Sauer RT
    Cell; 2005 Jul; 121(7):1017-27. PubMed ID: 15989952
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nonequilibrium capture rates induce protein accumulation and enhanced adsorption to solid-state nanopores.
    Freedman KJ; Haq SR; Fletcher MR; Foley JP; Jemth P; Edel JB; Kim MJ
    ACS Nano; 2014 Dec; 8(12):12238-49. PubMed ID: 25426798
    [TBL] [Abstract][Full Text] [Related]  

  • 29. ClpP hydrolyzes a protein substrate processively in the absence of the ClpA ATPase: mechanistic studies of ATP-independent proteolysis.
    Jennings LD; Lun DS; Médard M; Licht S
    Biochemistry; 2008 Nov; 47(44):11536-46. PubMed ID: 18839965
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evidence of unfolded protein translocation through a protein nanopore.
    Pastoriza-Gallego M; Breton MF; Discala F; Auvray L; Betton JM; Pelta J
    ACS Nano; 2014 Nov; 8(11):11350-60. PubMed ID: 25380310
    [TBL] [Abstract][Full Text] [Related]  

  • 31. All-Atom Molecular Dynamics Simulation of Protein Translocation through an α-Hemolysin Nanopore.
    Di Marino D; Bonome EL; Tramontano A; Chinappi M
    J Phys Chem Lett; 2015 Aug; 6(15):2963-8. PubMed ID: 26267189
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanically Watching the ClpXP Proteolytic Machinery.
    Cordova JC; Olivares AO; Lang MJ
    Methods Mol Biol; 2017; 1486():317-341. PubMed ID: 27844434
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Single molecule unfolding and stretching of protein domains inside a solid-state nanopore by electric field.
    Freedman KJ; Haq SR; Edel JB; Jemth P; Kim MJ
    Sci Rep; 2013; 3():1638. PubMed ID: 23572157
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enabling nanopore technology for sensing individual amino acids by a derivatization strategy.
    Wei X; Ma D; Jing L; Wang LY; Wang X; Zhang Z; Lenhart BJ; Yin Y; Wang Q; Liu C
    J Mater Chem B; 2020 Aug; 8(31):6792-6797. PubMed ID: 32495805
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Insights into protein sequencing with an α-Hemolysin nanopore by atomistic simulations.
    Di Muccio G; Rossini AE; Di Marino D; Zollo G; Chinappi M
    Sci Rep; 2019 Apr; 9(1):6440. PubMed ID: 31015503
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Single-nucleotide discrimination in immobilized DNA oligonucleotides with a biological nanopore.
    Stoddart D; Heron AJ; Mikhailova E; Maglia G; Bayley H
    Proc Natl Acad Sci U S A; 2009 May; 106(19):7702-7. PubMed ID: 19380741
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Research highlights: nanopore protein detection and analysis.
    Acharya S; Edwards S; Schmidt J
    Lab Chip; 2015 Sep; 15(17):3424-7. PubMed ID: 26170241
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Protein unfolding through nanopores.
    Oukhaled A; Pastoriza-Gallego M; Bacri L; Mathé J; Auvray L; Pelta J
    Protein Pept Lett; 2014 Mar; 21(3):266-74. PubMed ID: 24370253
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Discriminating Residue Substitutions in a Single Protein Molecule Using a Sub-nanopore.
    Dong Z; Kennedy E; Hokmabadi M; Timp G
    ACS Nano; 2017 Jun; 11(6):5440-5452. PubMed ID: 28538092
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sequential protein unfolding through a carbon nanotube pore.
    Xu Z; Zhang S; Weber JK; Luan B; Zhou R; Li J
    Nanoscale; 2016 Jun; 8(24):12143-51. PubMed ID: 26899409
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.