These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 25403227)

  • 1. Nonstationary precipitation Intensity-Duration-Frequency curves for infrastructure design in a changing climate.
    Cheng L; AghaKouchak A
    Sci Rep; 2014 Nov; 4():7093. PubMed ID: 25403227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Efficient Statistical Approach to Develop Intensity-Duration-Frequency Curves for Precipitation and Runoff under Future Climate.
    Butcher JB; Zi T; Pickard BR; Job SC; Johnson TE; Groza BA
    Clim Change; 2021 Jan; 164(1-2):1-3. PubMed ID: 34334847
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial analysis of future climate risk to stormwater infrastructure.
    Butcher JB; Sarkar S; Johnson TE; Shabani A
    J Am Water Resour Assoc; 2023 May; 59(6):1383-1396. PubMed ID: 38268555
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Climate change impacts on rainfall intensity-duration-frequency curves in local scale catchments.
    Xu M; Bravo de Guenni L; Córdova JR
    Environ Monit Assess; 2024 Mar; 196(4):372. PubMed ID: 38489074
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring multidecadal changes in climate and reservoir storage for assessing nonstationarity in flood peaks and risks worldwide by an integrated frequency analysis approach.
    Zhou Y
    Water Res; 2020 Oct; 185():116265. PubMed ID: 32784036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Climate change-induced variations in future extreme precipitation intensity-duration-frequency in flood-prone city of Adama, central Ethiopia.
    Bulti DT; Abebe BG; Biru Z
    Environ Monit Assess; 2021 Nov; 193(12):784. PubMed ID: 34755254
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intensity-Duration-Frequency (IDF) rainfall curves, for data series and climate projection in African cities.
    De Paola F; Giugni M; Topa ME; Bucchignani E
    Springerplus; 2014; 3():133. PubMed ID: 25674436
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatiotemporal trends in mean and extreme climate variables over 1981-2020 in Meki watershed of central rift valley basin, Ethiopia.
    Terefe S; Bantider A; Teferi E; Abi M
    Heliyon; 2022 Nov; 8(11):e11684. PubMed ID: 36439755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonstationary Temperature-Duration-Frequency curves.
    Ouarda TBMJ; Charron C
    Sci Rep; 2018 Oct; 8(1):15493. PubMed ID: 30341366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A New Time-varying Concept of Risk in a Changing Climate.
    Sarhadi A; Ausín MC; Wiper MP
    Sci Rep; 2016 Oct; 6():35755. PubMed ID: 27762398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impacts of climate change on IDF curves for urban stormwater management systems design: the case of Dodola Town, Ethiopia.
    Bibi TS; Tekesa NW
    Environ Monit Assess; 2022 Dec; 195(1):170. PubMed ID: 36459269
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing urban infrastructure investment planning practices for a changing climate.
    He J; Valeo C; Bouchart FJ
    Water Sci Technol; 2006; 53(10):13-20. PubMed ID: 16838684
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Future changes in the intensity and frequency of precipitation extremes over China in a warmer world: Insight from a large ensemble.
    Li Y; Bai J; You Z; Hou J; Li W
    PLoS One; 2021; 16(5):e0252133. PubMed ID: 34029349
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identifying climate analogues for precipitation extremes for Denmark based on RCM simulations from the ENSEMBLES database.
    Arnbjerg-Nielsen K; Funder SG; Madsen H
    Water Sci Technol; 2015; 71(3):418-25. PubMed ID: 25714642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exposure of the US population to extreme precipitation risk has increased due to climate change.
    Kim J; Porter J; Kearns EJ
    Sci Rep; 2023 Dec; 13(1):21782. PubMed ID: 38066061
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification and evaluation of soil moisture flash drought by a nonstationary framework considering climate and land cover changes.
    Zha X; Xiong L; Liu C; Shu P; Xiong B
    Sci Total Environ; 2023 Jan; 856(Pt 2):158953. PubMed ID: 36179827
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multifaceted responses of vegetation to average and extreme climate change over global drylands.
    He L; Guo J; Yang W; Jiang Q; Chen L; Tang K
    Sci Total Environ; 2023 Feb; 858(Pt 2):159942. PubMed ID: 36343828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trends in the consecutive days of temperature and precipitation extremes in China during 1961-2015.
    Shi J; Cui L; Wen K; Tian Z; Wei P; Zhang B
    Environ Res; 2018 Feb; 161():381-391. PubMed ID: 29197279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Review: Can temperature be used to inform changes to flood extremes with global warming?
    Wasko C
    Philos Trans A Math Phys Eng Sci; 2021 Apr; 379(2195):20190551. PubMed ID: 33641461
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Datasets for characterizing extreme events relevant to hydrologic design over the conterminous United States.
    Sun N; Yan H; Wigmosta MS; Coleman AM; Leung LR; Hou Z
    Sci Data; 2022 Apr; 9(1):154. PubMed ID: 35383200
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.