These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 25403248)

  • 1. Green leaf volatiles, fire and nonanoic acid activate MAPkinases in the model grass species Lolium temulentum.
    Dombrowski JE; Martin RC
    BMC Res Notes; 2014 Nov; 7():807. PubMed ID: 25403248
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptome analysis of the model grass Lolium temulentum exposed to green leaf volatiles.
    Dombrowski JE; Kronmiller BA; Hollenbeck VG; Rhodes AC; Henning JA; Martin RC
    BMC Plant Biol; 2019 May; 19(1):222. PubMed ID: 31138172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation of MAP kinases by green leaf volatiles in grasses.
    Dombrowski JE; Martin RC
    BMC Res Notes; 2018 Jan; 11(1):79. PubMed ID: 29378628
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Abiotic stresses activate a MAPkinase in the model grass species Lolium temulentum.
    Dombrowski JE; Martin RC
    J Plant Physiol; 2012 Jun; 169(9):915-9. PubMed ID: 22472075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wounding systemically activates a mitogen-activated protein kinase in forage and turf grasses.
    Dombrowski JE; Hind SR; Martin RC; Stratmann JW
    Plant Sci; 2011 May; 180(5):686-93. PubMed ID: 21421419
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptome Analysis of Wounding in the Model Grass
    Dombrowski JE; Kronmiller BA; Hollenbeck V; Martin RC
    Plants (Basel); 2020 Jun; 9(6):. PubMed ID: 32580425
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cloning and characterization of a salt stress-inducible small GTPase gene from the model grass species Lolium temulentum.
    Dombrowski JE; Baldwin JC; Martin RC
    J Plant Physiol; 2008 Apr; 165(6):651-61. PubMed ID: 17707946
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arachidonic acid directly activates members of the mitogen-activated protein kinase superfamily in rabbit proximal tubule cells.
    Alexander LD; Cui XL; Falck JR; Douglas JG
    Kidney Int; 2001 Jun; 59(6):2039-53. PubMed ID: 11380805
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of Lolium temulentum as a model grass species for the study of salinity stress by PCR-based subtractive suppression hybridization analysis.
    Baldwin JC; Dombrowski JE
    Plant Sci; 2006 Oct; 171(4):459-69. PubMed ID: 25193643
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel mitogen-activated protein kinase gene in maize (Zea mays), ZmMPK3, is involved in response to diverse environmental cues.
    Wang J; Ding H; Zhang A; Ma F; Cao J; Jiang M
    J Integr Plant Biol; 2010 May; 52(5):442-52. PubMed ID: 20537040
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Green Leaf Volatiles in Plant Signaling and Response.
    Matsui K; Koeduka T
    Subcell Biochem; 2016; 86():427-43. PubMed ID: 27023245
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Involvement of a MAP kinase, ZmMPK5, in senescence and recovery from low-temperature stress in maize.
    Berberich T; Sano H; Kusano T
    Mol Gen Genet; 1999 Oct; 262(3):534-42. PubMed ID: 10589842
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbial volatile emissions promote accumulation of exceptionally high levels of starch in leaves in mono- and dicotyledonous plants.
    Ezquer I; Li J; Ovecka M; Baroja-Fernández E; Muñoz FJ; Montero M; Díaz de Cerio J; Hidalgo M; Sesma MT; Bahaji A; Etxeberria E; Pozueta-Romero J
    Plant Cell Physiol; 2010 Oct; 51(10):1674-93. PubMed ID: 20739303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphatidic acid activates a wound-activated MAPK in Glycine max.
    Lee S; Hirt H; Lee Y
    Plant J; 2001 Jun; 26(5):479-86. PubMed ID: 11439134
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chronic exposure of human mesangial cells to high glucose environments activates the p38 MAPK pathway.
    Wilmer WA; Dixon CL; Hebert C
    Kidney Int; 2001 Sep; 60(3):858-71. PubMed ID: 11532081
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Convergence and divergence of stress-induced mitogen-activated protein kinase signaling pathways at the level of two distinct mitogen-activated protein kinase kinases.
    Cardinale F; Meskiene I; Ouaked F; Hirt H
    Plant Cell; 2002 Mar; 14(3):703-11. PubMed ID: 11910015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in extracellular pH are neither required nor sufficient for activation of mitogen-activated protein kinases (MAPKs) in response to systemin and fusicoccin in tomato.
    Higgins R; Lockwood T; Holley S; Yalamanchili R; Stratmann JW
    Planta; 2007 May; 225(6):1535-46. PubMed ID: 17109147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diel periodicity in the production of green leaf volatiles by wild and cultivated host plants of stemborer moths, Chilo partellus and Busseola fusca.
    Chamberlain K; Khan ZR; Pickett JA; Toshova T; Wadhams LJ
    J Chem Ecol; 2006 Mar; 32(3):565-77. PubMed ID: 16572298
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions.
    Roux PP; Blenis J
    Microbiol Mol Biol Rev; 2004 Jun; 68(2):320-44. PubMed ID: 15187187
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cloning and characterization of a putative fructosyltransferase and two putative invertase genes from the temperate grass Lolium temulentum L.
    Gallagher JA; Cairns AJ; Pollock CJ
    J Exp Bot; 2004 Mar; 55(397):557-69. PubMed ID: 14982941
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.