These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 25403525)

  • 1. Finding the epistasis needles in the genome-wide haystack.
    Ritchie MD
    Methods Mol Biol; 2015; 1253():19-33. PubMed ID: 25403525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance of epistasis detection methods in semi-simulated GWAS.
    Chatelain C; Durand G; Thuillier V; Augé F
    BMC Bioinformatics; 2018 Jun; 19(1):231. PubMed ID: 29914375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using biological knowledge to uncover the mystery in the search for epistasis in genome-wide association studies.
    Ritchie MD
    Ann Hum Genet; 2011 Jan; 75(1):172-82. PubMed ID: 21158748
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biological knowledge-driven analysis of epistasis in human GWAS with application to lipid traits.
    Ma L; Keinan A; Clark AG
    Methods Mol Biol; 2015; 1253():35-45. PubMed ID: 25403526
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Filter-free exhaustive odds ratio-based genome-wide interaction approach pinpoints evidence for interaction in the HLA region in psoriasis.
    Grange L; Bureau JF; Nikolayeva I; Paul R; Van Steen K; Schwikowski B; Sakuntabhai A
    BMC Genet; 2015 Feb; 16():11. PubMed ID: 25655172
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epistasis Test in Meta-Analysis: A Multi-Parameter Markov Chain Monte Carlo Model for Consistency of Evidence.
    Lin C; Chu CM; Su SL
    PLoS One; 2016; 11(4):e0152891. PubMed ID: 27045371
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TEAM: efficient two-locus epistasis tests in human genome-wide association study.
    Zhang X; Huang S; Zou F; Wang W
    Bioinformatics; 2010 Jun; 26(12):i217-27. PubMed ID: 20529910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioinformatics challenges in genome-wide association studies (GWAS).
    De R; Bush WS; Moore JH
    Methods Mol Biol; 2014; 1168():63-81. PubMed ID: 24870131
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MatrixEpistasis: ultrafast, exhaustive epistasis scan for quantitative traits with covariate adjustment.
    Zhu S; Fang G
    Bioinformatics; 2018 Jul; 34(14):2341-2348. PubMed ID: 29509873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predictive rule inference for epistatic interaction detection in genome-wide association studies.
    Wan X; Yang C; Yang Q; Xue H; Tang NL; Yu W
    Bioinformatics; 2010 Jan; 26(1):30-7. PubMed ID: 19880365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. IndOR: a new statistical procedure to test for SNP-SNP epistasis in genome-wide association studies.
    Emily M
    Stat Med; 2012 Sep; 31(21):2359-73. PubMed ID: 22711278
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The pursuit of genome-wide association studies: where are we now?
    Ku CS; Loy EY; Pawitan Y; Chia KS
    J Hum Genet; 2010 Apr; 55(4):195-206. PubMed ID: 20300123
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The complete compositional epistasis detection in genome-wide association studies.
    Wan X; Yang C; Yang Q; Zhao H; Yu W
    BMC Genet; 2013 Feb; 14():7. PubMed ID: 23421496
    [TBL] [Abstract][Full Text] [Related]  

  • 14. BiForce Toolbox: powerful high-throughput computational analysis of gene-gene interactions in genome-wide association studies.
    Gyenesei A; Moody J; Laiho A; Semple CA; Haley CS; Wei WH
    Nucleic Acids Res; 2012 Jul; 40(Web Server issue):W628-32. PubMed ID: 22689639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detecting epistasis in human complex traits.
    Wei WH; Hemani G; Haley CS
    Nat Rev Genet; 2014 Nov; 15(11):722-33. PubMed ID: 25200660
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Genomewide association study: advances, challenges and deliberation].
    Tu X; Shi LS; Wang F; Wang Q
    Sheng Li Ke Xue Jin Zhan; 2010 Apr; 41(2):87-94. PubMed ID: 21416992
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multigenic modeling of complex disease by random forests.
    Sun YV
    Adv Genet; 2010; 72():73-99. PubMed ID: 21029849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uncovering the total heritability explained by all true susceptibility variants in a genome-wide association study.
    So HC; Li M; Sham PC
    Genet Epidemiol; 2011 Sep; 35(6):447-56. PubMed ID: 21618601
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Statistical methods with exhaustive search in the identification of gene-gene interactions for colorectal cancer.
    Kafaie S; Xu L; Hu T
    Genet Epidemiol; 2021 Mar; 45(2):222-234. PubMed ID: 33231893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A powerful and efficient two-stage method for detecting gene-to-gene interactions in GWAS.
    Pecanka J; Jonker MA; ; Bochdanovits Z; Van Der Vaart AW
    Biostatistics; 2017 Jul; 18(3):477-494. PubMed ID: 28334077
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.