BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 25403537)

  • 1. Genome-wide epistasis and pleiotropy characterized by the bipartite human phenotype network.
    Darabos C; Moore JH
    Methods Mol Biol; 2015; 1253():269-83. PubMed ID: 25403537
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using the bipartite human phenotype network to reveal pleiotropy and epistasis beyond the gene.
    Darabos C; Harmon SH; Moore JH
    Pac Symp Biocomput; 2014; ():188-99. PubMed ID: 24297546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. WISH-R- a fast and efficient tool for construction of epistatic networks for complex traits and diseases.
    Carmelo VAO; Kogelman LJA; Madsen MB; Kadarmideen HN
    BMC Bioinformatics; 2018 Jul; 19(1):277. PubMed ID: 30064383
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-wide genetic interaction analysis of glaucoma using expert knowledge derived from human phenotype networks.
    Hu T; Darabos C; Cricco ME; Kong E; Moore JH
    Pac Symp Biocomput; 2015; 20():207-18. PubMed ID: 25592582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shadows of complexity: what biological networks reveal about epistasis and pleiotropy.
    Tyler AL; Asselbergs FW; Williams SM; Moore JH
    Bioessays; 2009 Feb; 31(2):220-7. PubMed ID: 19204994
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Combined Analysis of Pleiotropy and Epistasis (CAPE).
    Tyler AL; Emerson J; El Kassaby B; Wells AE; Philip VM; Carter GW
    Methods Mol Biol; 2021; 2212():55-67. PubMed ID: 33733350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inferring gene function and network organization in Drosophila signaling by combined analysis of pleiotropy and epistasis.
    Carter GW
    G3 (Bethesda); 2013 May; 3(5):807-14. PubMed ID: 23550134
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Epistatic Networks Jointly Influence Phenotypes Related to Metabolic Disease and Gene Expression in Diversity Outbred Mice.
    Tyler AL; Ji B; Gatti DM; Munger SC; Churchill GA; Svenson KL; Carter GW
    Genetics; 2017 Jun; 206(2):621-639. PubMed ID: 28592500
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phenome-Wide Association Studies: Embracing Complexity for Discovery.
    Pendergrass SA; Verma A; Okula A; Hall MA; Crawford DC; Ritchie MD
    Hum Hered; 2015; 79(3-4):111-23. PubMed ID: 26201697
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Network theory for data-driven epistasis networks.
    Lareau CA; McKinney BA
    Methods Mol Biol; 2015; 1253():285-300. PubMed ID: 25403538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The detection and characterization of pleiotropy: discovery, progress, and promise.
    Tyler AL; Crawford DC; Pendergrass SA
    Brief Bioinform; 2016 Jan; 17(1):13-22. PubMed ID: 26223525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CAPE: an R package for combined analysis of pleiotropy and epistasis.
    Tyler AL; Lu W; Hendrick JJ; Philip VM; Carter GW
    PLoS Comput Biol; 2013 Oct; 9(10):e1003270. PubMed ID: 24204223
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Array-based synthetic genetic screens to map bacterial pathways and functional networks in Escherichia coli.
    Babu M; Gagarinova A; Emili A
    Methods Mol Biol; 2011; 781():99-126. PubMed ID: 21877280
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The genetic architecture of domestication in the chicken: effects of pleiotropy and linkage.
    Wright D; Rubin CJ; Martinez Barrio A; Schütz K; Kerje S; Brändström H; Kindmark A; Jensen P; Andersson L
    Mol Ecol; 2010 Dec; 19(23):5140-56. PubMed ID: 21040053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crop genome-wide association study: a harvest of biological relevance.
    Liu HJ; Yan J
    Plant J; 2019 Jan; 97(1):8-18. PubMed ID: 30368955
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular mechanisms of epistasis within and between genes.
    Lehner B
    Trends Genet; 2011 Aug; 27(8):323-31. PubMed ID: 21684621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genotype networks of 80 quantitative Arabidopsis thaliana phenotypes reveal phenotypic evolvability despite pervasive epistasis.
    Schweizer G; Wagner A
    PLoS Comput Biol; 2020 Aug; 16(8):e1008082. PubMed ID: 32790763
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Integration of Epistasis Network and Functional Interactions in a GWAS Implicates RXR Pathway Genes in the Immune Response to Smallpox Vaccine.
    McKinney BA; Lareau C; Oberg AL; Kennedy RB; Ovsyannikova IG; Poland GA
    PLoS One; 2016; 11(8):e0158016. PubMed ID: 27513748
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The contribution of epistatic pleiotropy to the genetic architecture of covariation among polygenic traits in mice.
    Wolf JB; Pomp D; Eisen EJ; Cheverud JM; Leamy LJ
    Evol Dev; 2006; 8(5):468-76. PubMed ID: 16925682
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Statistical epistasis is a generic feature of gene regulatory networks.
    Gjuvsland AB; Hayes BJ; Omholt SW; Carlborg O
    Genetics; 2007 Jan; 175(1):411-20. PubMed ID: 17028346
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.