These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 25403541)

  • 1. Epistasis analysis using artificial intelligence.
    Moore JH; Hill DP
    Methods Mol Biol; 2015; 1253():327-46. PubMed ID: 25403541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Random forests on distance matrices for imaging genetics studies.
    Sim A; Tsagkrasoulis D; Montana G
    Stat Appl Genet Mol Biol; 2013 Dec; 12(6):757-86. PubMed ID: 24246292
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detecting, characterizing, and interpreting nonlinear gene-gene interactions using multifactor dimensionality reduction.
    Moore JH
    Adv Genet; 2010; 72():101-16. PubMed ID: 21029850
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Epistasis analysis using multifactor dimensionality reduction.
    Moore JH; Andrews PC
    Methods Mol Biol; 2015; 1253():301-14. PubMed ID: 25403539
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of approaches for machine-learning optimization of neural networks for detecting gene-gene interactions in genetic epidemiology.
    Motsinger-Reif AA; Dudek SM; Hahn LW; Ritchie MD
    Genet Epidemiol; 2008 May; 32(4):325-40. PubMed ID: 18265411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The challenge of detecting epistasis (G x G interactions): Genetic Analysis Workshop 16.
    An P; Mukherjee O; Chanda P; Yao L; Engelman CD; Huang CH; Zheng T; Kovac IP; Dubé MP; Liang X; Li J; de Andrade M; Culverhouse R; Malzahn D; Manning AK; Clarke GM; Jung J; Province MA
    Genet Epidemiol; 2009; 33 Suppl 1(0 1):S58-67. PubMed ID: 19924703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational intelligence in bioinformatics: SNP/haplotype data in genetic association study for common diseases.
    Kelemen A; Vasilakos AV; Liang Y
    IEEE Trans Inf Technol Biomed; 2009 Sep; 13(5):841-7. PubMed ID: 19556205
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A flexible computational framework for detecting, characterizing, and interpreting statistical patterns of epistasis in genetic studies of human disease susceptibility.
    Moore JH; Gilbert JC; Tsai CT; Chiang FT; Holden T; Barney N; White BC
    J Theor Biol; 2006 Jul; 241(2):252-61. PubMed ID: 16457852
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine learning approaches for the discovery of gene-gene interactions in disease data.
    Upstill-Goddard R; Eccles D; Fliege J; Collins A
    Brief Bioinform; 2013 Mar; 14(2):251-60. PubMed ID: 22611119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Applications of multifactor dimensionality reduction to genome-wide data using the R package 'MDR'.
    Winham S
    Methods Mol Biol; 2013; 1019():479-98. PubMed ID: 23756907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epistasis analysis using information theory.
    Moore JH; Hu T
    Methods Mol Biol; 2015; 1253():257-68. PubMed ID: 25403536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational methods in glaucoma research: Current status and future outlook.
    Kim MJ; Martin CA; Kim J; Jablonski MM
    Mol Aspects Med; 2023 Dec; 94():101222. PubMed ID: 37925783
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Epistasis analysis using ReliefF.
    Moore JH
    Methods Mol Biol; 2015; 1253():315-25. PubMed ID: 25403540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of neural network architecture using genetic programming improves detection and modeling of gene-gene interactions in studies of human diseases.
    Ritchie MD; White BC; Parker JS; Hahn LW; Moore JH
    BMC Bioinformatics; 2003 Jul; 4():28. PubMed ID: 12846935
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Efficient Genome-Wide Multilocus Epistasis Search.
    Kärkkäinen HP; Li Z; Sillanpää MJ
    Genetics; 2015 Nov; 201(3):865-70. PubMed ID: 26405029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Artificial intelligence in molecular biology: a review and assessment.
    Rawlings CJ; Fox JP
    Philos Trans R Soc Lond B Biol Sci; 1994 Jun; 344(1310):353-62; discussion 362-3. PubMed ID: 7800705
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-wide epistasis and pleiotropy characterized by the bipartite human phenotype network.
    Darabos C; Moore JH
    Methods Mol Biol; 2015; 1253():269-83. PubMed ID: 25403537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finding the epistasis needles in the genome-wide haystack.
    Ritchie MD
    Methods Mol Biol; 2015; 1253():19-33. PubMed ID: 25403525
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detecting epistasis from an ensemble of adapting populations.
    McCandlish DM; Otwinowski J; Plotkin JB
    Evolution; 2015 Sep; 69(9):2359-70. PubMed ID: 26194030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Artificial neural networks and their use in quantitative pathology.
    Dytch HE; Wied GL
    Anal Quant Cytol Histol; 1990 Dec; 12(6):379-93. PubMed ID: 2078261
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.