BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 25403657)

  • 1. Unexpected loss of stereoselectivity in ring-opening reaction of 2-alkoxy-2-thio-1,3,2-oxathiaphospholanes with a pyrophosphate anion.
    Guga P; Tomaszewska A
    Chirality; 2015 Feb; 27(2):115-22. PubMed ID: 25403657
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of nucleoside alpha-thiotriphosphates via an oxathiaphospholane approach.
    Misiura K; Szymanowicz D; Stec WJ
    Org Lett; 2005 May; 7(11):2217-20. PubMed ID: 15901173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stereoselective formation of a P-P bond in the reaction of 2-alkoxy-2-thio-1,3,2-oxathiaphospholanes with O,O-dialkyl H-phosphonates and H-thiophosphonates.
    Błaziak D; Guga P; Jagiełło A; Korczyński D; Maciaszek A; Nowicka A; Pietkiewicz A; Stec WJ
    Org Biomol Chem; 2010 Dec; 8(24):5505-10. PubMed ID: 20944857
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diastereomerically pure nucleoside-5'-O-(2-thio-4,4-pentamethylene-1,3,2-oxathiaphospholane)s--substrates for synthesis of P-chiral derivatives of nucleoside-5'-O-phosphorothioates.
    Tomaszewska A; Guga P; Stec WJ
    Chirality; 2011 Mar; 23(3):237-44. PubMed ID: 20928893
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxathiaphospholane approach to the synthesis of oligodeoxyribonucleotides containing stereodefined internucleotide phosphoroselenoate function.
    Guga P; Maciaszek A; Stec WJ
    Org Lett; 2005 Sep; 7(18):3901-4. PubMed ID: 16119927
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of phosphorothioate oligonucleotides with stereodefined phosphorothioate linkages.
    Guga P; Stec WJ
    Curr Protoc Nucleic Acid Chem; 2003 Oct; Chapter 4():Unit 4.17. PubMed ID: 18428907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of PS/PO-chimeric oligonucleotides using mixed oxathiaphospholane and phosphoramidite chemistry.
    Radzikowska E; Baraniak J
    Org Biomol Chem; 2015 Jan; 13(1):269-76. PubMed ID: 25363356
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxathiaphospholane approach to N- and O-phosphorothioylation of amino acids.
    Baraniak J; Kaczmarek R; Korczyński D; Wasilewska E
    J Org Chem; 2002 Oct; 67(21):7267-74. PubMed ID: 12375953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stereocontrolled synthesis of LNA dinucleoside phosphorothioate by the oxathiaphospholane approach.
    Karwowski B; Okruszek A; Wengel J; Stec WJ
    Bioorg Med Chem Lett; 2001 Apr; 11(8):1001-3. PubMed ID: 11327575
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The synthesis of dithymidine boranophosphate by the oxathiaphospholane approach.
    Okruszek A; Sierzchała A; Zmudzka K; Stec WJ
    Nucleosides Nucleotides Nucleic Acids; 2001; 20(10-11):1843-9. PubMed ID: 11719997
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polymer-bound oxathiaphospholane: a solid-phase reagent for regioselective monothiophosphorylation and monophosphorylation of unprotected nucleosides and carbohydrates.
    Ahmadibeni Y; Parang K
    Org Lett; 2005 May; 7(10):1955-8. PubMed ID: 15876028
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA oligonucleotides containing stereodefined phosphorothioate linkages in selected positions.
    Nawrot B; Rebowska B
    Curr Protoc Nucleic Acid Chem; 2009 Mar; Chapter 4():Unit 4.34. PubMed ID: 19319859
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chelation of vanadium(V) by difluoromethylene bisphosphonate, a structural analogue of pyrophosphate.
    Crans DC; Holder AA; Saha TK; Prakash GK; Yousufuddin M; Kultyshev R; Ismail R; Goodman MF; Borden J; Florian J
    Inorg Chem; 2007 Aug; 46(16):6723-32. PubMed ID: 17628058
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid synthesis of nucleotide pyrophosphate linkages in a ball mill.
    Ravalico F; Messina I; Berberian MV; James SL; Migaud ME; Vyle JS
    Org Biomol Chem; 2011 Oct; 9(19):6496-7. PubMed ID: 21814693
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and structural and magnetic characterization of {[(phen)(2)Ni](2)(micro-P(2)O(7))} . 27H(2)O and {[(phen)(2)Mn](2)(micro-P(2)O(7))} . 13H(2)O: rare examples of coordination complexes with the pyrophosphate ligand.
    Ikotun OF; Armatus NG; Julve M; Kruger PE; Lloret F; Nieuwenhuyzen M; Doyle RP
    Inorg Chem; 2007 Aug; 46(16):6668-74. PubMed ID: 17636894
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ring-contraction vs ring-expansion reactions of spiro-cyclopropanecarboxylated sugars.
    Ramakrishna B; Sridhar PR
    Org Lett; 2013 Sep; 15(17):4474-7. PubMed ID: 23964753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anion effect in the diastereoselective formation of bischelated Ni(II) complexes with a novel, chiral phosphine derived from 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU).
    O'Reilly M; Pattacini R; Braunstein P
    Dalton Trans; 2009 Aug; (31):6092-5. PubMed ID: 20449101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nucleosides and nucleotides. 192. Toward the total synthesis of cyclic ADP-carbocyclic-ribose. Formation of the intramolecular pyrophosphate linkage by a conformation-restriction strategy in a syn-form using a halogen substitution at the 8-position of the adenine ring.
    Sumita Y; Shirato M; Ueno Y; Matsuda A; Shuto S
    Nucleosides Nucleotides Nucleic Acids; 2000; 19(1-2):175-87. PubMed ID: 10772708
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ruthenium-catalyzed nucleophilic ring-opening reactions of a 3-aza-2-oxabicyclo[2.2.1]hept-5-ene with alcohols.
    Machin BP; Howell J; Mandel J; Blanchard N; Tam W
    Org Lett; 2009 May; 11(10):2077-80. PubMed ID: 19361204
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of fused-ring nicotine derivatives from (S)-nicotine.
    Ondachi PW; Comins DL
    J Org Chem; 2010 Mar; 75(5):1706-16. PubMed ID: 20141225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.