These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
369 related articles for article (PubMed ID: 25403732)
1. Comparative assessments of CRISPR-Cas nucleases' cleavage efficiency in planta. Johnson RA; Gurevich V; Filler S; Samach A; Levy AA Plant Mol Biol; 2015 Jan; 87(1-2):143-56. PubMed ID: 25403732 [TBL] [Abstract][Full Text] [Related]
2. A rapid assay to quantify the cleavage efficiency of custom-designed nucleases in planta. Johnson RA; Gurevich V; Levy AA Plant Mol Biol; 2013 Jun; 82(3):207-21. PubMed ID: 23625357 [TBL] [Abstract][Full Text] [Related]
3. Highly efficient heritable plant genome engineering using Cas9 orthologues from Streptococcus thermophilus and Staphylococcus aureus. Steinert J; Schiml S; Fauser F; Puchta H Plant J; 2015 Dec; 84(6):1295-305. PubMed ID: 26576927 [TBL] [Abstract][Full Text] [Related]
4. [CRISPR/Cas9-based genome editing systems and the analysis of targeted genome mutations in plants]. Ma XL; Liu YG Yi Chuan; 2016 Feb; 38(2):118-25. PubMed ID: 26907775 [TBL] [Abstract][Full Text] [Related]
5. The CRISPR/Cas system can be used as nuclease for in planta gene targeting and as paired nickases for directed mutagenesis in Arabidopsis resulting in heritable progeny. Schiml S; Fauser F; Puchta H Plant J; 2014 Dec; 80(6):1139-50. PubMed ID: 25327456 [TBL] [Abstract][Full Text] [Related]
6. Efficient targeted mutagenesis in soybean by TALENs and CRISPR/Cas9. Du H; Zeng X; Zhao M; Cui X; Wang Q; Yang H; Cheng H; Yu D J Biotechnol; 2016 Jan; 217():90-7. PubMed ID: 26603121 [TBL] [Abstract][Full Text] [Related]
7. Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana. Fauser F; Schiml S; Puchta H Plant J; 2014 Jul; 79(2):348-59. PubMed ID: 24836556 [TBL] [Abstract][Full Text] [Related]
8. RNA-guided genome editing in plants using a CRISPR-Cas system. Xie K; Yang Y Mol Plant; 2013 Nov; 6(6):1975-83. PubMed ID: 23956122 [TBL] [Abstract][Full Text] [Related]
9. The CRISPR-Cas system for plant genome editing: advances and opportunities. Kumar V; Jain M J Exp Bot; 2015 Jan; 66(1):47-57. PubMed ID: 25371501 [TBL] [Abstract][Full Text] [Related]
10. Cas9-based genome editing in Arabidopsis and tobacco. Li JF; Zhang D; Sheen J Methods Enzymol; 2014; 546():459-72. PubMed ID: 25398353 [TBL] [Abstract][Full Text] [Related]
11. Designed nucleases for targeted genome editing. Lee J; Chung JH; Kim HM; Kim DW; Kim H Plant Biotechnol J; 2016 Feb; 14(2):448-62. PubMed ID: 26369767 [TBL] [Abstract][Full Text] [Related]
12. Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. Liang Z; Zhang K; Chen K; Gao C J Genet Genomics; 2014 Feb; 41(2):63-8. PubMed ID: 24576457 [TBL] [Abstract][Full Text] [Related]
13. Dramatic Improvement of CRISPR/Cas9 Editing in Ng H; Dean N mSphere; 2017; 2(2):. PubMed ID: 28435892 [TBL] [Abstract][Full Text] [Related]
14. RNA-dependent DNA endonuclease Cas9 of the CRISPR system: Holy Grail of genome editing? Gasiunas G; Siksnys V Trends Microbiol; 2013 Nov; 21(11):562-7. PubMed ID: 24095303 [TBL] [Abstract][Full Text] [Related]
15. Bacterial CRISPR/Cas DNA endonucleases: A revolutionary technology that could dramatically impact viral research and treatment. Kennedy EM; Cullen BR Virology; 2015 May; 479-480():213-20. PubMed ID: 25759096 [TBL] [Abstract][Full Text] [Related]