These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 25404135)

  • 21. Assignment of hydrogen-bond structure in a ligand-nucleobase complex inside duplex DNA: combined use of quantum chemical calculations and 15N NMR experiments.
    Yoshimoto K; Nishizawa S; Koshino H; Sato Y; Teramae N; Maeda M
    Nucleic Acids Symp Ser (Oxf); 2005; (49):255-6. PubMed ID: 17150730
    [TBL] [Abstract][Full Text] [Related]  

  • 22. NMR studies of protein-nucleic acid complexes: structures, solvation, dynamics and coupled protein folding.
    Härd T
    Q Rev Biophys; 1999 Feb; 32(1):57-98. PubMed ID: 10800521
    [No Abstract]   [Full Text] [Related]  

  • 23. Accurate prediction of proton chemical shifts. II. Peptide analogues.
    Wang B; Hinton JF; Pulay P
    J Comput Chem; 2002 Mar; 23(4):492-7. PubMed ID: 11908086
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chemical shifts in nucleic acids studied by density functional theory calculations and comparison with experiment.
    Fonville JM; Swart M; Vokáčová Z; Sychrovský V; Šponer JE; Šponer J; Hilbers CW; Bickelhaupt FM; Wijmenga SS
    Chemistry; 2012 Sep; 18(39):12372-87. PubMed ID: 22899588
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Accurate and cost-effective NMR chemical shift predictions for proteins using a molecules-in-molecules fragmentation-based method.
    Chandy SK; Thapa B; Raghavachari K
    Phys Chem Chem Phys; 2020 Dec; 22(47):27781-27799. PubMed ID: 33244526
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structure of the complex of lac repressor headpiece and an 11 base-pair half-operator determined by nuclear magnetic resonance spectroscopy and restrained molecular dynamics.
    Chuprina VP; Rullmann JA; Lamerichs RM; van Boom JH; Boelens R; Kaptein R
    J Mol Biol; 1993 Nov; 234(2):446-62. PubMed ID: 8230225
    [TBL] [Abstract][Full Text] [Related]  

  • 27. MIM-ML: A Novel Quantum Chemical Fragment-Based Random Forest Model for Accurate Prediction of NMR Chemical Shifts of Nucleic Acids.
    Chandy SK; Raghavachari K
    J Chem Theory Comput; 2023 Oct; 19(19):6632-6642. PubMed ID: 37703522
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ab-initio quantum mechanical calculations of NMR chemical shifts in nucleic acid constituents. I. The Watson-Crick base pairs.
    Giessner-Prettre C
    J Biomol Struct Dyn; 1984 Aug; 2(1):233-48. PubMed ID: 6400932
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Toward an integrated model of protein-DNA recognition as inferred from NMR studies on the Lac repressor system.
    Kalodimos CG; Boelens R; Kaptein R
    Chem Rev; 2004 Aug; 104(8):3567-86. PubMed ID: 15303828
    [No Abstract]   [Full Text] [Related]  

  • 30. Dynamics Studies of DNA with Non-canonical Structure Using NMR Spectroscopy.
    Oh KI; Kim J; Park CJ; Lee JH
    Int J Mol Sci; 2020 Apr; 21(8):. PubMed ID: 32290457
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nuclear Magnetic Resonance-Assisted Prediction of Secondary Structure for RNA: Incorporation of Direction-Dependent Chemical Shift Constraints.
    Chen JL; Bellaousov S; Tubbs JD; Kennedy SD; Lopez MJ; Mathews DH; Turner DH
    Biochemistry; 2015 Nov; 54(45):6769-82. PubMed ID: 26451676
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nucleic acid helix structure determination from NMR proton chemical shifts.
    van der Werf RM; Tessari M; Wijmenga SS
    J Biomol NMR; 2013 Jun; 56(2):95-112. PubMed ID: 23564038
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An NMR, IR and theoretical investigation of (1)H chemical shifts and hydrogen bonding in phenols.
    Abraham RJ; Mobli M
    Magn Reson Chem; 2007 Oct; 45(10):865-77. PubMed ID: 17729232
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Thermodynamics of the interactions of lac repressor with variants of the symmetric lac operator: effects of converting a consensus site to a non-specific site.
    Frank DE; Saecker RM; Bond JP; Capp MW; Tsodikov OV; Melcher SE; Levandoski MM; Record MT
    J Mol Biol; 1997 Apr; 267(5):1186-206. PubMed ID: 9150406
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Computational studies of 13C NMR chemical shifts of saccharides.
    Taubert S; Konschin H; Sundholm D
    Phys Chem Chem Phys; 2005 Jul; 7(13):2561-9. PubMed ID: 16189565
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evaluation of free energy landscape for base-amino acid interactions using ab initio force field and extensive sampling.
    Yoshida T; Nishimura T; Aida M; Pichierri F; Gromiha MM; Sarai A
    Biopolymers; 2001-2002; 61(1):84-95. PubMed ID: 11891631
    [TBL] [Abstract][Full Text] [Related]  

  • 37. 1H chemical shifts in NMR. Part 21--prediction of the 1H chemical shifts of molecules containing the ester group: a modelling and ab initio investigation.
    Abraham RJ; Bardsley B; Mobli M; Smith RJ
    Magn Reson Chem; 2005 Jan; 43(1):3-15. PubMed ID: 15390026
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Accurate ab initio calculations of O-HO and O-H(-)O proton chemical shifts: towards elucidation of the nature of the hydrogen bond and prediction of hydrogen bond distances.
    Siskos MG; Tzakos AG; Gerothanassis IP
    Org Biomol Chem; 2015 Sep; 13(33):8852-68. PubMed ID: 26196256
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Converging nuclear magnetic shielding calculations with respect to basis and system size in protein systems.
    Hartman JD; Neubauer TJ; Caulkins BG; Mueller LJ; Beran GJ
    J Biomol NMR; 2015 Jul; 62(3):327-40. PubMed ID: 25993979
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Efficient prediction of nucleic acid binding function from low-resolution protein structures.
    Szilágyi A; Skolnick J
    J Mol Biol; 2006 May; 358(3):922-33. PubMed ID: 16551468
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.