BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 25404173)

  • 1. Ergothioneine biosynthetic methyltransferase EgtD reveals the structural basis of aromatic amino acid betaine biosynthesis.
    Vit A; Misson L; Blankenfeldt W; Seebeck FP
    Chembiochem; 2015 Jan; 16(1):119-25. PubMed ID: 25404173
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystallization and preliminary X-ray analysis of the ergothioneine-biosynthetic methyltransferase EgtD.
    Vit A; Misson L; Blankenfeldt W; Seebeck FP
    Acta Crystallogr F Struct Biol Commun; 2014 May; 70(Pt 5):676-80. PubMed ID: 24817736
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structure of a S-adenosyl-L-methionine-dependent O-methyltransferase-like enzyme from Aspergillus flavus.
    Liao L; Zhou Y; Peng T; Guo Y; Zhao Y; Zeng Z
    Proteins; 2021 Feb; 89(2):185-192. PubMed ID: 32875607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition and Regulation of the Ergothioneine Biosynthetic Methyltransferase EgtD.
    Misson L; Burn R; Vit A; Hildesheim J; Beliaeva MA; Blankenfeldt W; Seebeck FP
    ACS Chem Biol; 2018 May; 13(5):1333-1342. PubMed ID: 29658702
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural insights into the histidine trimethylation activity of EgtD from Mycobacterium smegmatis.
    Jeong JH; Cha HJ; Ha SC; Rojviriya C; Kim YG
    Biochem Biophys Res Commun; 2014 Oct; 452(4):1098-103. PubMed ID: 25251321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of recombinant human betaine: homocysteine S-methyltransferase for x-ray crystallographic studies and further characterization of interaction with S-adenosylmethionine.
    Bose N; Greenspan P; Momany C
    Protein Expr Purif; 2002 Jun; 25(1):73-80. PubMed ID: 12071701
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibitors of Mycobacterium tuberculosis EgtD target both substrate binding sites to limit hercynine production.
    Sudasinghe TD; Banco MT; Ronning DR
    Sci Rep; 2021 Nov; 11(1):22240. PubMed ID: 34782676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and functional characterization of the TYW3/Taw3 class of SAM-dependent methyltransferases.
    Currie MA; Brown G; Wong A; Ohira T; Sugiyama K; Suzuki T; Yakunin AF; Jia Z
    RNA; 2017 Mar; 23(3):346-354. PubMed ID: 27932585
    [No Abstract]   [Full Text] [Related]  

  • 9. Mechanisms for auto-inhibition and forced product release in glycine N-methyltransferase: crystal structures of wild-type, mutant R175K and S-adenosylhomocysteine-bound R175K enzymes.
    Huang Y; Komoto J; Konishi K; Takata Y; Ogawa H; Gomi T; Fujioka M; Takusagawa F
    J Mol Biol; 2000 Apr; 298(1):149-62. PubMed ID: 10756111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanistic features of the atypical tRNA m1G9 SPOUT methyltransferase, Trm10.
    Krishnamohan A; Jackman JE
    Nucleic Acids Res; 2017 Sep; 45(15):9019-9029. PubMed ID: 28911116
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reexamination of the Ergothioneine Biosynthetic Methyltransferase EgtD from Mycobacterium tuberculosis as a Protein Kinase Substrate.
    Maurer A; Seebeck FP
    Chembiochem; 2020 Oct; 21(20):2908-2911. PubMed ID: 32614492
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biochemical Characterization and Structural Basis of Reactivity and Regioselectivity Differences between Burkholderia thailandensis and Burkholderia glumae 1,6-Didesmethyltoxoflavin N-Methyltransferase.
    Fenwick MK; Almabruk KH; Ealick SE; Begley TP; Philmus B
    Biochemistry; 2017 Aug; 56(30):3934-3944. PubMed ID: 28665591
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro reconstitution of Mycobacterial ergothioneine biosynthesis.
    Seebeck FP
    J Am Chem Soc; 2010 May; 132(19):6632-3. PubMed ID: 20420449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structures of CbiL, a methyltransferase involved in anaerobic vitamin B biosynthesis, and CbiL in complex with S-adenosylhomocysteine--implications for the reaction mechanism.
    Wada K; Harada J; Yaeda Y; Tamiaki H; Oh-Oka H; Fukuyama K
    FEBS J; 2007 Jan; 274(2):563-73. PubMed ID: 17229157
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structures of BchU, a methyltransferase involved in bacteriochlorophyll c biosynthesis, and its complex with S-adenosylhomocysteine: implications for reaction mechanism.
    Wada K; Yamaguchi H; Harada J; Niimi K; Osumi S; Saga Y; Oh-Oka H; Tamiaki H; Fukuyama K
    J Mol Biol; 2006 Jul; 360(4):839-49. PubMed ID: 16797589
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional and structural characterization of a novel catechol-O-methyltransferase from Schizosaccharomyces pombe.
    Wang Q; Teng M; Li X
    IUBMB Life; 2019 Mar; 71(3):330-339. PubMed ID: 30501007
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structures of two natural product methyltransferases reveal the basis for substrate specificity in plant O-methyltransferases.
    Zubieta C; He XZ; Dixon RA; Noel JP
    Nat Struct Biol; 2001 Mar; 8(3):271-9. PubMed ID: 11224575
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Specific potassium ion interactions facilitate homocysteine binding to betaine-homocysteine S-methyltransferase.
    Mládková J; Hladílková J; Diamond CE; Tryon K; Yamada K; Garrow TA; Jungwirth P; Koutmos M; Jiráček J
    Proteins; 2014 Oct; 82(10):2552-64. PubMed ID: 24895213
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two enzymes, BtaA and BtaB, are sufficient for betaine lipid biosynthesis in bacteria.
    Riekhof WR; Andre C; Benning C
    Arch Biochem Biophys; 2005 Sep; 441(1):96-105. PubMed ID: 16095555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biochemical Studies of Mycobacterial Fatty Acid Methyltransferase: A Catalyst for the Enzymatic Production of Biodiesel.
    Petronikolou N; Nair SK
    Chem Biol; 2015 Nov; 22(11):1480-1490. PubMed ID: 26526103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.