These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 25404232)

  • 1. Cdk5/p35 functions as a crucial regulator of spatial learning and memory.
    Mishiba T; Tanaka M; Mita N; He X; Sasamoto K; Itohara S; Ohshima T
    Mol Brain; 2014 Nov; 7():82. PubMed ID: 25404232
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cyclin-Dependent Kinase 5 Regulates Dendritic Spine Formation and Maintenance of Cortical Neuron in the Mouse Brain.
    Mita N; He X; Sasamoto K; Mishiba T; Ohshima T
    Cereb Cortex; 2016 Mar; 26(3):967-976. PubMed ID: 25404468
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impairment of hippocampal long-term depression and defective spatial learning and memory in p35 mice.
    Ohshima T; Ogura H; Tomizawa K; Hayashi K; Suzuki H; Saito T; Kamei H; Nishi A; Bibb JA; Hisanaga S; Matsui H; Mikoshiba K
    J Neurochem; 2005 Aug; 94(4):917-25. PubMed ID: 15992381
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cdk5/p35 is required for motor coordination and cerebellar plasticity.
    He X; Ishizeki M; Mita N; Wada S; Araki Y; Ogura H; Abe M; Yamazaki M; Sakimura K; Mikoshiba K; Inoue T; Ohshima T
    J Neurochem; 2014 Oct; 131(1):53-64. PubMed ID: 24802945
    [TBL] [Abstract][Full Text] [Related]  

  • 5. p39 Is Responsible for Increasing Cdk5 Activity during Postnatal Neuron Differentiation and Governs Neuronal Network Formation and Epileptic Responses.
    Li W; Allen ME; Rui Y; Ku L; Liu G; Bankston AN; Zheng JQ; Feng Y
    J Neurosci; 2016 Nov; 36(44):11283-11294. PubMed ID: 27807169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amyloid-β Fosters p35/CDK5 Signaling Contributing to Changes of Inhibitory Synapses in Early Stages of Cerebral Amyloidosis.
    Kiss E; Groeneweg F; Gorgas K; Schlicksupp A; Kins S; Kirsch J; Kuhse J
    J Alzheimers Dis; 2020; 74(4):1167-1187. PubMed ID: 32144981
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Involvement of Cdk5 activating subunit p35 in synaptic plasticity in excitatory and inhibitory neurons.
    Takahashi M; Nakabayashi T; Mita N; Jin X; Aikawa Y; Sasamoto K; Miyoshi G; Miyata M; Inoue T; Ohshima T
    Mol Brain; 2022 Apr; 15(1):37. PubMed ID: 35484559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent advances in understanding the roles of Cdk5 in synaptic plasticity.
    Lai KO; Ip NY
    Biochim Biophys Acta; 2009 Aug; 1792(8):741-5. PubMed ID: 19442718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cdk5 activity is required for Purkinje cell dendritic growth in cell-autonomous and non-cell-autonomous manners.
    Xu B; Kumazawa A; Kobayashi S; Hisanaga SI; Inoue T; Ohshima T
    Dev Neurobiol; 2017 Oct; 77(10):1175-1187. PubMed ID: 28589675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tissue-type plasminogen activator regulates p35-mediated Cdk5 activation in the postsynaptic terminal.
    Diaz A; Jeanneret V; Merino P; McCann P; Yepes M
    J Cell Sci; 2019 Feb; 132(5):. PubMed ID: 30709918
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sigma-1 receptor regulates Tau phosphorylation and axon extension by shaping p35 turnover via myristic acid.
    Tsai SY; Pokrass MJ; Klauer NR; Nohara H; Su TP
    Proc Natl Acad Sci U S A; 2015 May; 112(21):6742-7. PubMed ID: 25964330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphorylation of p35 and p39 by Cdk5 determines the subcellular location of the holokinase in a phosphorylation-site-specific manner.
    Asada A; Saito T; Hisanaga S
    J Cell Sci; 2012 Jul; 125(Pt 14):3421-9. PubMed ID: 22467861
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphorylation of drebrin by cyclin-dependent kinase 5 and its role in neuronal migration.
    Tanabe K; Yamazaki H; Inaguma Y; Asada A; Kimura T; Takahashi J; Taoka M; Ohshima T; Furuichi T; Isobe T; Nagata K; Shirao T; Hisanaga S
    PLoS One; 2014; 9(3):e92291. PubMed ID: 24637538
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peripheral and orofacial pain sensation is unaffected by the loss of p39.
    Prochazkova M; Hall B; Hu M; Okine T; Reukauf J; Binukumar BK; Amin ND; Roque E; Pant HC; Kulkarni A
    Mol Pain; 2017; 13():1744806917737205. PubMed ID: 28969475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cdk5 Contributes to Huntington's Disease Learning and Memory Deficits via Modulation of Brain Region-Specific Substrates.
    Alvarez-Periel E; Puigdellívol M; Brito V; Plattner F; Bibb JA; Alberch J; Ginés S
    Mol Neurobiol; 2018 Aug; 55(8):6250-6268. PubMed ID: 29288339
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anti-diabetes drug pioglitazone ameliorates synaptic defects in AD transgenic mice by inhibiting cyclin-dependent kinase5 activity.
    Chen J; Li S; Sun W; Li J
    PLoS One; 2015; 10(4):e0123864. PubMed ID: 25875370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Valproic acid downregulates Cdk5 activity via the transcription of the p35 mRNA.
    Takahashi M; Ishida M; Saito T; Ohshima T; Hisanaga S
    Biochem Biophys Res Commun; 2014 May; 447(4):678-82. PubMed ID: 24755075
    [TBL] [Abstract][Full Text] [Related]  

  • 18. p35 and Rac1 underlie the neuroprotection and cognitive improvement induced by CDK5 silencing.
    Posada-Duque RA; López-Tobón A; Piedrahita D; González-Billault C; Cardona-Gomez GP
    J Neurochem; 2015 Jul; 134(2):354-70. PubMed ID: 25864429
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synergistic contributions of cyclin-dependant kinase 5/p35 and Reelin/Dab1 to the positioning of cortical neurons in the developing mouse brain.
    Ohshima T; Ogawa M; Veeranna ; Hirasawa M; Longenecker G; Ishiguro K; Pant HC; Brady RO; Kulkarni AB; Mikoshiba K
    Proc Natl Acad Sci U S A; 2001 Feb; 98(5):2764-9. PubMed ID: 11226314
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Foxp1 in Forebrain Pyramidal Neurons Controls Gene Expression Required for Spatial Learning and Synaptic Plasticity.
    Araujo DJ; Toriumi K; Escamilla CO; Kulkarni A; Anderson AG; Harper M; Usui N; Ellegood J; Lerch JP; Birnbaum SG; Tucker HO; Powell CM; Konopka G
    J Neurosci; 2017 Nov; 37(45):10917-10931. PubMed ID: 28978667
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.