BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 25404345)

  • 21. The HIV-1 Tat protein enhances megakaryocytic commitment of K562 cells by facilitating CREB transcription factor coactivation by CBP.
    Williams CA; Mondal D; Agrawal KC
    Exp Biol Med (Maywood); 2005 Dec; 230(11):872-84. PubMed ID: 16339753
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Inducible binding of cyclic adenosine 3',5'-monophosphate (cAMP)-responsive element binding protein (CREB) to a cAMP-responsive promoter in vivo.
    Wölfl S; Martinez C; Majzoub JA
    Mol Endocrinol; 1999 May; 13(5):659-69. PubMed ID: 10319317
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Incretin-stimulated interaction between β-cell Kv1.5 and Kvβ2 channel proteins involves acetylation/deacetylation by CBP/SirT1.
    Kim SJ; Ao Z; Warnock G; McIntosh CH
    Biochem J; 2013 Apr; 451(2):227-34. PubMed ID: 23390957
    [TBL] [Abstract][Full Text] [Related]  

  • 24. CD28-costimulation activates cyclic AMP-responsive element-binding protein in T lymphocytes.
    Hsueh YP; Liang HE; Ng SY; Lai MZ
    J Immunol; 1997 Jan; 158(1):85-93. PubMed ID: 8977178
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pharmacological Activators of the NR4A Nuclear Receptors Enhance LTP in a CREB/CBP-Dependent Manner.
    Bridi MS; Hawk JD; Chatterjee S; Safe S; Abel T
    Neuropsychopharmacology; 2017 May; 42(6):1243-1253. PubMed ID: 27834392
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Differential role for CBP and p300 CREB-binding domain in motor skill learning.
    Oliveira AM; Abel T; Brindle PK; Wood MA
    Behav Neurosci; 2006 Jun; 120(3):724-9. PubMed ID: 16768624
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular Basis for the Mechanism of Constitutive CBP/p300 Coactivator Recruitment by CRTC1-MAML2 and Its Implications in cAMP Signaling.
    Clark MD; Kumar GS; Marcum R; Luo Q; Zhang Y; Radhakrishnan I
    Biochemistry; 2015 Sep; 54(35):5439-46. PubMed ID: 26274502
    [TBL] [Abstract][Full Text] [Related]  

  • 28. SIRT1 regulates TNF-α-induced expression of CD40 in 3T3-L1 adipocytes via NF-κB pathway.
    Lin QQ; Yan CF; Lin R; Zhang JY; Wang WR; Yang LN; Zhang KF
    Cytokine; 2012 Nov; 60(2):447-55. PubMed ID: 22717288
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modulation of Human Arylamine
    Butcher NJ; Burow R; Minchin RF
    Mol Pharmacol; 2020 Aug; 98(2):88-95. PubMed ID: 32487734
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A gut microbial metabolite of ginsenosides, compound K, induces intestinal glucose absorption and Na(+) /glucose cotransporter 1 gene expression through activation of cAMP response element binding protein.
    Wang CW; Huang YC; Chan FN; Su SC; Kuo YH; Huang SF; Hung MW; Lin HC; Chang WL; Chang TC
    Mol Nutr Food Res; 2015 Apr; 59(4):670-84. PubMed ID: 25600494
    [TBL] [Abstract][Full Text] [Related]  

  • 31. RGS13 acts as a nuclear repressor of CREB.
    Xie Z; Geiger TR; Johnson EN; Nyborg JK; Druey KM
    Mol Cell; 2008 Sep; 31(5):660-70. PubMed ID: 18775326
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regulation of the c-fos promoter by the ternary complex factor Sap-1a and its coactivator CBP.
    Janknecht R; Nordheim A
    Oncogene; 1996 May; 12(9):1961-9. PubMed ID: 8649857
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Osteocalcin triggers Fas/FasL-mediated necroptosis in adipocytes via activation of p300.
    Otani T; Matsuda M; Mizokami A; Kitagawa N; Takeuchi H; Jimi E; Inai T; Hirata M
    Cell Death Dis; 2018 Dec; 9(12):1194. PubMed ID: 30546087
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phosphorylation-induced transient intrinsic structure in the kinase-inducible domain of CREB facilitates its recognition by the KIX domain of CBP.
    Solt I; Magyar C; Simon I; Tompa P; Fuxreiter M
    Proteins; 2006 Aug; 64(3):749-57. PubMed ID: 16761278
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Signaling pathway for adiponectin expression in adipocytes by osteocalcin.
    Otani T; Mizokami A; Hayashi Y; Gao J; Mori Y; Nakamura S; Takeuchi H; Hirata M
    Cell Signal; 2015 Mar; 27(3):532-44. PubMed ID: 25562427
    [TBL] [Abstract][Full Text] [Related]  

  • 36. CREB-mediated transcriptional control.
    Andrisani OM
    Crit Rev Eukaryot Gene Expr; 1999; 9(1):19-32. PubMed ID: 10200909
    [TBL] [Abstract][Full Text] [Related]  

  • 37. DNA binding and phosphorylation induce conformational alterations in the kinase-inducible domain of CREB. Implications for the mechanism of transcription function.
    Sharma N; Lopez DI; Nyborg JK
    J Biol Chem; 2007 Jul; 282(27):19872-83. PubMed ID: 17491014
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Acetylation of Foxo1 alters its DNA-binding ability and sensitivity to phosphorylation.
    Matsuzaki H; Daitoku H; Hatta M; Aoyama H; Yoshimochi K; Fukamizu A
    Proc Natl Acad Sci U S A; 2005 Aug; 102(32):11278-83. PubMed ID: 16076959
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Increased pancreatic beta-cell proliferation mediated by CREB binding protein gene activation.
    Hussain MA; Porras DL; Rowe MH; West JR; Song WJ; Schreiber WE; Wondisford FE
    Mol Cell Biol; 2006 Oct; 26(20):7747-59. PubMed ID: 16908541
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Proatherogenic abnormalities of lipid metabolism in SirT1 transgenic mice are mediated through Creb deacetylation.
    Qiang L; Lin HV; Kim-Muller JY; Welch CL; Gu W; Accili D
    Cell Metab; 2011 Dec; 14(6):758-67. PubMed ID: 22078933
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.