These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 2540492)

  • 1. Evolution of the DNA invertase Gin of phage Mu and related site-specific recombination proteins.
    Stern B; Kamp D
    Protein Seq Data Anal; 1989 Feb; 2(2):87-91. PubMed ID: 2540492
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A DNA-binding domain swap converts the invertase gin into a resolvase.
    Schneider F; Schwikardi M; Muskhelishvili G; Dröge P
    J Mol Biol; 2000 Jan; 295(4):767-75. PubMed ID: 10656789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Holliday junction resolvases encoded by homologous rusA genes in Escherichia coli K-12 and phage 82.
    Mahdi AA; Sharples GJ; Mandal TN; Lloyd RG
    J Mol Biol; 1996 Apr; 257(3):561-73. PubMed ID: 8648624
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The resolvase encoded by Xanthomonas campestris transposable element ISXc5 constitutes a new subfamily closely related to DNA invertases.
    Liu CC; Hühne R; Tu J; Lorbach E; Dröge P
    Genes Cells; 1998 Apr; 3(4):221-33. PubMed ID: 9663657
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Site-specific recombination at res sites containing DNA-binding sequences for both Tn21 and Tn3 resolvases.
    Soultanas P; Oram M; Halford SE
    J Mol Biol; 1995 Jan; 245(3):208-18. PubMed ID: 7844813
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contributions of supercoiling to Tn3 resolvase and phage Mu Gin site-specific recombination.
    Benjamin KR; Abola AP; Kanaar R; Cozzarelli NR
    J Mol Biol; 1996 Feb; 256(1):50-65. PubMed ID: 8609613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA inversions in the chromosome of Escherichia coli and in bacteriophage Mu: relationship to other site-specific recombination systems.
    Plasterk RH; Brinkman A; van de Putte P
    Proc Natl Acad Sci U S A; 1983 Sep; 80(17):5355-8. PubMed ID: 6310572
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Processive recombination by wild-type gin and an enhancer-independent mutant. Insight into the mechanisms of recombination selectivity and strand exchange.
    Crisona NJ; Kanaar R; Gonzalez TN; Zechiedrich EL; Klippel A; Cozzarelli NR
    J Mol Biol; 1994 Oct; 243(3):437-57. PubMed ID: 7966272
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A protein binding to the J kappa recombination sequence of immunoglobulin genes contains a sequence related to the integrase motif.
    Matsunami N; Hamaguchi Y; Yamamoto Y; Kuze K; Kangawa K; Matsuo H; Kawaichi M; Honjo T
    Nature; 1989 Dec 21-28; 342(6252):934-7. PubMed ID: 2556644
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chimeric recombinases with designed DNA sequence recognition.
    Akopian A; He J; Boocock MR; Stark WM
    Proc Natl Acad Sci U S A; 2003 Jul; 100(15):8688-91. PubMed ID: 12837939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalysis by site-specific recombinases.
    Stark WM; Boocock MR; Sherratt DJ
    Trends Genet; 1992 Dec; 8(12):432-9. PubMed ID: 1337225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel site-specific recombinase encoded by the Streptococcus pyogenes plasmid pSM19035.
    Rojo F; Alonso JC
    J Mol Biol; 1994 Apr; 238(2):159-72. PubMed ID: 8158646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Site-specific recombinase genes in three Shigella subgroups and nucleotide sequences of a pinB gene and an invertible B segment from Shigella boydii.
    Tominaga A; Ikemizu S; Enomoto M
    J Bacteriol; 1991 Jul; 173(13):4079-87. PubMed ID: 2061288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Site-specific recombination in bacteriophage Mu: characterization of binding sites for the DNA invertase Gin.
    Mertens G; Klippel A; Fuss H; Blöcker H; Frank R; Kahmann R
    EMBO J; 1988 Apr; 7(4):1219-27. PubMed ID: 3042381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diversity in the serine recombinases.
    Smith MC; Thorpe HM
    Mol Microbiol; 2002 Apr; 44(2):299-307. PubMed ID: 11972771
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Site-specific DNA Inversion by Serine Recombinases.
    Johnson RC
    Microbiol Spectr; 2015 Feb; 3(1):MDNA3-0047-2014. PubMed ID: 26104558
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the staphylococcal beta-lactamase transposon Tn552.
    Rowland SJ; Dyke KG
    EMBO J; 1989 Sep; 8(9):2761-73. PubMed ID: 2555186
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Site-specific recombinases: changing partners and doing the twist.
    Sadowski P
    J Bacteriol; 1986 Feb; 165(2):341-7. PubMed ID: 3003022
    [No Abstract]   [Full Text] [Related]  

  • 19. The DNA invertase Gin of phage Mu: formation of a covalent complex with DNA via a phosphoserine at amino acid position 9.
    Klippel A; Mertens G; Patschinsky T; Kahmann R
    EMBO J; 1988 Apr; 7(4):1229-37. PubMed ID: 3042382
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA inversions in phages and bacteria.
    van de Putte P; Goosen N
    Trends Genet; 1992 Dec; 8(12):457-62. PubMed ID: 1337227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.