BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 25405326)

  • 1. Yolk-shell nanoarchitectures with a Ru-containing core and a radially oriented mesoporous silica shell: facile synthesis and application for one-pot biomass conversion by combining with enzyme.
    Wei W; Zhao Y; Peng S; Zhang H; Bian Y; Li H; Li H
    ACS Appl Mater Interfaces; 2014 Dec; 6(23):20851-9. PubMed ID: 25405326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Immobilized glucoamylase: A biocatalyst of dextrin hydrolysis].
    Kovalenko GA; Perminova LV; Plaksin GV; Chuenko TV; Komova OV; Rudina NA
    Prikl Biokhim Mikrobiol; 2006; 42(2):163-8. PubMed ID: 16761568
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hollow mesoporous aluminosilica spheres with perpendicular pore channels as catalytic nanoreactors.
    Fang X; Liu Z; Hsieh MF; Chen M; Liu P; Chen C; Zheng N
    ACS Nano; 2012 May; 6(5):4434-44. PubMed ID: 22502599
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facile synthesis of yolk-shell magnetic mesoporous carbon microspheres for efficient enrichment of low abundance peptides.
    Wan H; Qin H; Xiong Z; Zhang W; Zou H
    Nanoscale; 2013 Nov; 5(22):10936-44. PubMed ID: 24061763
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immobilization of glucoamylase by adsorption on carbon supports and its application for heterogeneous hydrolysis of dextrin.
    Kovalenko GA; Perminova LV
    Carbohydr Res; 2008 May; 343(7):1202-11. PubMed ID: 18346718
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Catalytic properties of glucoamylase immobilized on the synthetic carbon material Sibunit].
    Kovalenko GA; Perminova LV; Terent'eva TG; Plaksin GV
    Prikl Biokhim Mikrobiol; 2007; 43(4):412-8. PubMed ID: 17929567
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A cationic surfactant assisted selective etching strategy to hollow mesoporous silica spheres.
    Fang X; Chen C; Liu Z; Liu P; Zheng N
    Nanoscale; 2011 Apr; 3(4):1632-9. PubMed ID: 21305093
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ru nanoparticles dispersed on magnetic yolk-shell nanoarchitectures with Fe
    Yang Y; Zhang W; Yang F; Zhou B; Zeng D; Zhang N; Zhao G; Hao S; Zhang X
    Nanoscale; 2018 Feb; 10(5):2199-2206. PubMed ID: 29334102
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Core-shell nanostructured catalysts.
    Zhang Q; Lee I; Joo JB; Zaera F; Yin Y
    Acc Chem Res; 2013 Aug; 46(8):1816-24. PubMed ID: 23268644
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-templating synthesis of hollow mesoporous silica and their applications in catalysis and drug delivery.
    Fang X; Zhao X; Fang W; Chen C; Zheng N
    Nanoscale; 2013 Mar; 5(6):2205-18. PubMed ID: 23400270
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of well-dispersed layered double hydroxide core@ordered mesoporous silica shell nanostructure (LDH@mSiO₂) and its application in drug delivery.
    Bao H; Yang J; Huang Y; Xu ZP; Hao N; Wu Z; Lu GQ; Zhao D
    Nanoscale; 2011 Oct; 3(10):4069-73. PubMed ID: 21858347
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Precisely controlled resorcinol-formaldehyde resin coating for fabricating core-shell, hollow, and yolk-shell carbon nanostructures.
    Fang X; Liu S; Zang J; Xu C; Zheng MS; Dong QF; Sun D; Zheng N
    Nanoscale; 2013 Aug; 5(15):6908-16. PubMed ID: 23783437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmolysis-Inspired Nanoengineering of Functional Yolk-Shell Microspheres with Magnetic Core and Mesoporous Silica Shell.
    Yue Q; Li J; Zhang Y; Cheng X; Chen X; Pan P; Su J; Elzatahry AA; Alghamdi A; Deng Y; Zhao D
    J Am Chem Soc; 2017 Nov; 139(43):15486-15493. PubMed ID: 29016118
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stable yolk-structured catalysts towards aqueous levulinic acid hydrogenation within a single Ru nanoparticle anchored inside the mesoporous shell of hollow carbon spheres.
    Yang Y; Zhang S; Gu L; Shao S; Li W; Zeng D; Yang F; Hao S
    J Colloid Interface Sci; 2020 Sep; 576():394-403. PubMed ID: 32460100
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Site-specific carbon deposition for hierarchically ordered core/shell-structured graphitic carbon with remarkable electrochemical performance.
    Lv Y; Wu Z; Qian X; Fang Y; Feng D; Xia Y; Tu B; Zhao D
    ChemSusChem; 2013 Oct; 6(10):1938-44. PubMed ID: 24039038
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuous one-pot synthesis of sandwich structured core-shell particles and transformation to yolk-shell particles.
    Ko YN; Kang YC; Park SB
    Chem Commun (Camb); 2013 May; 49(37):3884-6. PubMed ID: 23549662
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct conversion of cellulose into sorbitol catalyzed by a bifunctional catalyst.
    Li Z; Liu Y; Liu C; Wu S; Wei W
    Bioresour Technol; 2019 Feb; 274():190-197. PubMed ID: 30504102
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hollow/rattle-type mesoporous nanostructures by a structural difference-based selective etching strategy.
    Chen Y; Chen H; Guo L; He Q; Chen F; Zhou J; Feng J; Shi J
    ACS Nano; 2010 Jan; 4(1):529-39. PubMed ID: 20041633
    [TBL] [Abstract][Full Text] [Related]  

  • 19. One-Pot Synthesis of Monodisperse Noble Metal @ Resorcinol-Formaldehyde (M@RF) and M@Carbon Core-Shell Nanostructure and Their Catalytic Applications.
    Yang P; Xu Y; Chen L; Wang X; Zhang Q
    Langmuir; 2015 Oct; 31(42):11701-8. PubMed ID: 26434608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Construction of homogenous/heterogeneous hollow mesoporous silica nanostructures by silica-etching chemistry: principles, synthesis, and applications.
    Chen Y; Chen HR; Shi JL
    Acc Chem Res; 2014 Jan; 47(1):125-37. PubMed ID: 23944328
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.