These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 25405399)

  • 1. Sensitivity and stability analysis of a nonlinear material model of cervical intervertebral disc under cyclic loads using the finite element method.
    Arun MW; Yoganandan N; Stemper BD; Zheng M; Masoudi A; Snyder B
    Biomed Sci Instrum; 2014; 50():19-30. PubMed ID: 25405399
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fatigue responses of the human cervical spine intervertebral discs.
    Yoganandan N; Umale S; Stemper B; Snyder B
    J Mech Behav Biomed Mater; 2017 May; 69():30-38. PubMed ID: 28033533
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intervertebral disc degeneration alters lumbar spine segmental stiffness in all modes of loading under a compressive follower load.
    Zirbel SA; Stolworthy DK; Howell LL; Bowden AE
    Spine J; 2013 Sep; 13(9):1134-47. PubMed ID: 23507531
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calibration of hyperelastic material properties of the human lumbar intervertebral disc under fast dynamic compressive loads.
    Wagnac E; Arnoux PJ; Garo A; El-Rich M; Aubin CE
    J Biomech Eng; 2011 Oct; 133(10):101007. PubMed ID: 22070332
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Models that incorporate spinal structures predict better wear performance of cervical artificial discs.
    Bhattacharya S; Goel VK; Liu X; Kiapour A; Serhan HA
    Spine J; 2011 Aug; 11(8):766-76. PubMed ID: 21802999
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A combined finite element and optimization investigation of lumbar spine mechanics with and without muscles.
    Goel VK; Kong W; Han JS; Weinstein JN; Gilbertson LG
    Spine (Phila Pa 1976); 1993 Sep; 18(11):1531-41. PubMed ID: 8235826
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A meta-model analysis of a finite element simulation for defining poroelastic properties of intervertebral discs.
    Nikkhoo M; Hsu YC; Haghpanahi M; Parnianpour M; Wang JL
    Proc Inst Mech Eng H; 2013 Jun; 227(6):672-82. PubMed ID: 23636748
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finite element analysis predicts experimental failure patterns in vertebral bodies loaded via intervertebral discs up to large deformation.
    Clouthier AL; Hosseini HS; Maquer G; Zysset PK
    Med Eng Phys; 2015 Jun; 37(6):599-604. PubMed ID: 25922211
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human liver finite element model validation using compressive and tensile experimental data - biomed 2013.
    Davis ML; Moreno DP; Vavalle NA; Gayzik FS
    Biomed Sci Instrum; 2013; 49():289-96. PubMed ID: 23686212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Restoration of compressive loading properties of lumbar discs with a nucleus implant-a finite element analysis study.
    Strange DG; Fisher ST; Boughton PC; Kishen TJ; Diwan AD
    Spine J; 2010 Jul; 10(7):602-9. PubMed ID: 20547110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A three-dimensional nonlinear finite element analysis of the mechanical behavior of tissue engineered intervertebral discs under complex loads.
    Yao J; Turteltaub SR; Ducheyne P
    Biomaterials; 2006 Jan; 27(3):377-87. PubMed ID: 16168476
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Osmoviscoelastic finite element model of the intervertebral disc.
    Schroeder Y; Wilson W; Huyghe JM; Baaijens FP
    Eur Spine J; 2006 Aug; 15 Suppl 3(Suppl 3):S361-71. PubMed ID: 16724211
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Finite element modeling of cervical laminectomy with graded facetectomy.
    Kumaresan S; Yoganandan N; Pintar FA; Voo LM; Cusick JF; Larson SJ
    J Spinal Disord; 1997 Feb; 10(1):40-6. PubMed ID: 9041495
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Internal and external responses of anterior lumbar/lumbosacral fusion: nonlinear finite element analysis.
    Guan Y; Yoganandan N; Maiman DJ; Pintar FA
    J Spinal Disord Tech; 2008 Jun; 21(4):299-304. PubMed ID: 18525492
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomechanical effect of constraint in lumbar total disc replacement: a study with finite element analysis.
    Chung SK; Kim YE; Wang KC
    Spine (Phila Pa 1976); 2009 May; 34(12):1281-6. PubMed ID: 19455003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validated finite element analysis of the maverick total disc prosthesis.
    Le Huec JC; Lafage V; Bonnet X; Lavaste F; Josse L; Liu M; Skalli W
    J Spinal Disord Tech; 2010 Jun; 23(4):249-57. PubMed ID: 20068471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Burst fracture in the metastatically involved spine: development, validation, and parametric analysis of a three-dimensional poroelastic finite-element model.
    Whyne CM; Hu SS; Lotz JC
    Spine (Phila Pa 1976); 2003 Apr; 28(7):652-60. PubMed ID: 12671351
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finite element modeling of kinematic and load transmission alterations due to cervical intervertebral disc replacement.
    Womack W; Leahy PD; Patel VV; Puttlitz CM
    Spine (Phila Pa 1976); 2011 Aug; 36(17):E1126-33. PubMed ID: 21785298
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms of Cervical Spine Disc Injury under Cyclic Loading.
    Umale S; Yoganandan N
    Asian Spine J; 2018 Oct; 12(5):910-918. PubMed ID: 30213175
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental and model determination of human intervertebral disc osmoviscoelasticity.
    Schroeder Y; Elliott DM; Wilson W; Baaijens FP; Huyghe JM
    J Orthop Res; 2008 Aug; 26(8):1141-6. PubMed ID: 18327799
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.