These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 25406067)
1. Intercollicular commissural connections refine the representation of sound frequency and level in the auditory midbrain. Orton LD; Rees A Elife; 2014 Nov; 3():. PubMed ID: 25406067 [TBL] [Abstract][Full Text] [Related]
2. Commissural Gain Control Enhances the Midbrain Representation of Sound Location. Orton LD; Papasavvas CA; Rees A J Neurosci; 2016 Apr; 36(16):4470-81. PubMed ID: 27098691 [TBL] [Abstract][Full Text] [Related]
3. Intercollicular commissural projections modulate neuronal responses in the inferior colliculus. Malmierca MS; Hernández O; Rees A Eur J Neurosci; 2005 May; 21(10):2701-10. PubMed ID: 15926918 [TBL] [Abstract][Full Text] [Related]
4. Plastic Change in the Auditory Minimum Threshold Induced by Intercollicular Effects in Mice. Mei HX; Tang J; Fu ZY; Cheng L; Chen QC Neural Plast; 2016; 2016():4195391. PubMed ID: 27057363 [TBL] [Abstract][Full Text] [Related]
5. The inferior colliculus of the rat: a quantitative analysis of monaural frequency response areas. Hernández O; Espinosa N; Pérez-González D; Malmierca MS Neuroscience; 2005; 132(1):203-17. PubMed ID: 15780479 [TBL] [Abstract][Full Text] [Related]
6. Deactivation of the inferior colliculus by cooling demonstrates intercollicular modulation of neuronal activity. Orton LD; Poon PW; Rees A Front Neural Circuits; 2012; 6():100. PubMed ID: 23248587 [TBL] [Abstract][Full Text] [Related]
7. The dissimilar time course of temporary threshold shifts and reduction of inhibition in the inferior colliculus following intense sound exposure. Heeringa AN; van Dijk P Hear Res; 2014 Jun; 312():38-47. PubMed ID: 24650953 [TBL] [Abstract][Full Text] [Related]
8. Responses in the inferior colliculus of the guinea pig to concurrent harmonic series and the effect of inactivation of descending controls. Nakamoto KT; Shackleton TM; Palmer AR J Neurophysiol; 2010 Apr; 103(4):2050-61. PubMed ID: 20147418 [TBL] [Abstract][Full Text] [Related]
9. Modulation of amplitude sensitivity by bilateral collicular interaction among different frequency laminae. Mei HX; Cheng L; Tang J; Fu ZY; Jen PH; Chen QC Neurosci Lett; 2012 May; 517(1):13-7. PubMed ID: 22507237 [TBL] [Abstract][Full Text] [Related]
10. Duration selectivity of neurons in the inferior colliculus of the big brown bat: tolerance to changes in sound level. Fremouw T; Faure PA; Casseday JH; Covey E J Neurophysiol; 2005 Sep; 94(3):1869-78. PubMed ID: 15888527 [TBL] [Abstract][Full Text] [Related]
11. Duration selective neurons in the inferior colliculus of the rat: topographic distribution and relation of duration sensitivity to other response properties. Pérez-González D; Malmierca MS; Moore JM; Hernández O; Covey E J Neurophysiol; 2006 Feb; 95(2):823-36. PubMed ID: 16192332 [TBL] [Abstract][Full Text] [Related]
12. Non-plastic reorganization of frequency coding in the inferior colliculus of the rat following noise-induced hearing loss. Izquierdo MA; Gutiérrez-Conde PM; Merchán MA; Malmierca MS Neuroscience; 2008 Jun; 154(1):355-69. PubMed ID: 18384972 [TBL] [Abstract][Full Text] [Related]
13. Preceding weak noise sharpens the frequency tuning and elevates the response threshold of the mouse inferior collicular neurons through GABAergic inhibition. Wang X; Jen PH; Wu FJ; Chen QC Brain Res; 2007 Sep; 1167():80-91. PubMed ID: 17689505 [TBL] [Abstract][Full Text] [Related]
14. Descending and tonotopic projection patterns from the auditory cortex to the inferior colliculus. Straka MM; Hughes R; Lee P; Lim HH Neuroscience; 2015 Aug; 300():325-37. PubMed ID: 26002315 [TBL] [Abstract][Full Text] [Related]
15. Sound localization during homotopic and heterotopic bilateral cooling deactivation of primary and nonprimary auditory cortical areas in the cat. Malhotra S; Lomber SG J Neurophysiol; 2007 Jan; 97(1):26-43. PubMed ID: 17035367 [TBL] [Abstract][Full Text] [Related]
16. Comparison of midbrain and thalamic space-specific neurons in barn owls. Pérez ML; Peña JL J Neurophysiol; 2006 Feb; 95(2):783-90. PubMed ID: 16424454 [TBL] [Abstract][Full Text] [Related]
17. Leading inhibition to neural oscillation is important for time-domain processing in the auditory midbrain. Galazyuk AV; Lin W; Llano D; Feng AS J Neurophysiol; 2005 Jul; 94(1):314-26. PubMed ID: 15772243 [TBL] [Abstract][Full Text] [Related]
18. Bilateral collicular interaction: modulation of auditory signal processing in frequency domain. Cheng L; Mei HX; Tang J; Fu ZY; Jen PH; Chen QC Neuroscience; 2013 Apr; 235():27-39. PubMed ID: 23321542 [TBL] [Abstract][Full Text] [Related]
19. Changes in neuronal activity of the inferior colliculus in rat after temporal inactivation of the auditory cortex. Popelár J; Nwabueze-Ogbo FC; Syka J Physiol Res; 2003; 52(5):615-28. PubMed ID: 14535838 [TBL] [Abstract][Full Text] [Related]
20. Role of GABAergic inhibition in the coding of interaural time differences of low-frequency sounds in the inferior colliculus. D'Angelo WR; Sterbing SJ; Ostapoff EM; Kuwada S J Neurophysiol; 2005 Jun; 93(6):3390-400. PubMed ID: 15647399 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]