BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 25406451)

  • 21. The Cgl1281-encoding putative transporter of the cation diffusion facilitator family is responsible for alkali-tolerance in Corynebacterium glutamicum.
    Takeno S; Nakamura M; Fukai R; Ohnishi J; Ikeda M
    Arch Microbiol; 2008 Nov; 190(5):531-8. PubMed ID: 18592219
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The IclR-type transcriptional repressor LtbR regulates the expression of leucine and tryptophan biosynthesis genes in the amino acid producer Corynebacterium glutamicum.
    Brune I; Jochmann N; Brinkrolf K; Hüser AT; Gerstmeir R; Eikmanns BJ; Kalinowski J; Pühler A; Tauch A
    J Bacteriol; 2007 Apr; 189(7):2720-33. PubMed ID: 17259312
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The physiological role of riboflavin transporter and involvement of FMN-riboswitch in its gene expression in Corynebacterium glutamicum.
    Takemoto N; Tanaka Y; Inui M; Yukawa H
    Appl Microbiol Biotechnol; 2014 May; 98(9):4159-68. PubMed ID: 24531272
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Myo-inositol facilitators IolT1 and IolT2 enhance D-mannitol formation from D-fructose in Corynebacterium glutamicum.
    Bäumchen C; Krings E; Bringer S; Eggeling L; Sahm H
    FEMS Microbiol Lett; 2009 Jan; 290(2):227-35. PubMed ID: 19054080
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Maltose uptake by the novel ABC transport system MusEFGK2I causes increased expression of ptsG in Corynebacterium glutamicum.
    Henrich A; Kuhlmann N; Eck AW; Krämer R; Seibold GM
    J Bacteriol; 2013 Jun; 195(11):2573-84. PubMed ID: 23543710
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification and application of a different glucose uptake system that functions as an alternative to the phosphotransferase system in Corynebacterium glutamicum.
    Ikeda M; Mizuno Y; Awane S; Hayashi M; Mitsuhashi S; Takeno S
    Appl Microbiol Biotechnol; 2011 May; 90(4):1443-51. PubMed ID: 21452034
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The ncgl1108 (PheP (Cg)) gene encodes a new L-Phe transporter in Corynebacterium glutamicum.
    Zhao Z; Ding JY; Li T; Zhou NY; Liu SJ
    Appl Microbiol Biotechnol; 2011 Jun; 90(6):2005-13. PubMed ID: 21468701
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of the dicarboxylate transporter DctA in Corynebacterium glutamicum.
    Youn JW; Jolkver E; Krämer R; Marin K; Wendisch VF
    J Bacteriol; 2009 Sep; 191(17):5480-8. PubMed ID: 19581365
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sialic acid utilization by the soil bacterium Corynebacterium glutamicum.
    Gruteser N; Marin K; Krämer R; Thomas GH
    FEMS Microbiol Lett; 2012 Nov; 336(2):131-8. PubMed ID: 22924979
    [TBL] [Abstract][Full Text] [Related]  

  • 30. RNase E/G-dependent degradation of metE mRNA, encoding methionine synthase, in Corynebacterium glutamicum.
    Endo S; Maeda T; Kawame T; Iwai N; Wachi M
    J Gen Appl Microbiol; 2019 Mar; 65(1):47-52. PubMed ID: 29984738
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The two-component system ChrSA is crucial for haem tolerance and interferes with HrrSA in haem-dependent gene regulation in Corynebacterium glutamicum.
    Heyer A; Gätgens C; Hentschel E; Kalinowski J; Bott M; Frunzke J
    Microbiology (Reading); 2012 Dec; 158(Pt 12):3020-3031. PubMed ID: 23038807
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The dual transcriptional regulator CysR in Corynebacterium glutamicum ATCC 13032 controls a subset of genes of the McbR regulon in response to the availability of sulphide acceptor molecules.
    Rückert C; Milse J; Albersmeier A; Koch DJ; Pühler A; Kalinowski J
    BMC Genomics; 2008 Oct; 9():483. PubMed ID: 18854009
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of RamA, a novel LuxR-type transcriptional regulator of genes involved in acetate metabolism of Corynebacterium glutamicum.
    Cramer A; Gerstmeir R; Schaffer S; Bott M; Eikmanns BJ
    J Bacteriol; 2006 Apr; 188(7):2554-67. PubMed ID: 16547043
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The RamA regulon: complex regulatory interactions in relation to central metabolism in Corynebacterium glutamicum.
    Shah A; Blombach B; Gauttam R; Eikmanns BJ
    Appl Microbiol Biotechnol; 2018 Jul; 102(14):5901-5910. PubMed ID: 29804137
    [TBL] [Abstract][Full Text] [Related]  

  • 35. RNase III mediated cleavage of the coding region of mraZ mRNA is required for efficient cell division in Corynebacterium glutamicum.
    Maeda T; Tanaka Y; Takemoto N; Hamamoto N; Inui M
    Mol Microbiol; 2016 Mar; 99(6):1149-66. PubMed ID: 26713407
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Corynebacterium glutamicum possesses two secA homologous genes that are essential for viability.
    Caspers M; Freudl R
    Arch Microbiol; 2008 Jun; 189(6):605-10. PubMed ID: 18246326
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Analysis of genes involved in arsenic resistance in Corynebacterium glutamicum ATCC 13032.
    Ordóñez E; Letek M; Valbuena N; Gil JA; Mateos LM
    Appl Environ Microbiol; 2005 Oct; 71(10):6206-15. PubMed ID: 16204540
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The transcriptional regulator SsuR activates expression of the Corynebacterium glutamicum sulphonate utilization genes in the absence of sulphate.
    Koch DJ; Rückert C; Albersmeier A; Hüser AT; Tauch A; Pühler A; Kalinowski J
    Mol Microbiol; 2005 Oct; 58(2):480-94. PubMed ID: 16194234
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Engineering of Corynebacterium glutamicum for growth and L-lysine and lycopene production from N-acetyl-glucosamine.
    Matano C; Uhde A; Youn JW; Maeda T; Clermont L; Marin K; Krämer R; Wendisch VF; Seibold GM
    Appl Microbiol Biotechnol; 2014 Jun; 98(12):5633-43. PubMed ID: 24668244
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Functional Characterization of Corynebacterium alkanolyticum β-Xylosidase and Xyloside ABC Transporter in Corynebacterium glutamicum.
    Watanabe A; Hiraga K; Suda M; Yukawa H; Inui M
    Appl Environ Microbiol; 2015 Jun; 81(12):4173-83. PubMed ID: 25862223
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.