These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 25406578)

  • 1. In situ neutron powder diffraction using custom-made lithium-ion batteries.
    Brant WR; Schmid S; Du G; Brand HE; Pang WK; Peterson VK; Guo Z; Sharma N
    J Vis Exp; 2014 Nov; (93):e52284. PubMed ID: 25406578
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Situ Powder Diffraction Studies of Electrode Materials in Rechargeable Batteries.
    Sharma N; Pang WK; Guo Z; Peterson VK
    ChemSusChem; 2015 Sep; 8(17):2826-53. PubMed ID: 26223736
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visualizing the chemistry and structure dynamics in lithium-ion batteries by in-situ neutron diffraction.
    Wang XL; An K; Cai L; Feng Z; Nagler SE; Daniel C; Rhodes KJ; Stoica AD; Skorpenske HD; Liang C; Zhang W; Kim J; Qi Y; Harris SJ
    Sci Rep; 2012; 2():747. PubMed ID: 23087812
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neutron reflectometry studies on the lithiation of amorphous silicon electrodes in lithium-ion batteries.
    Jerliu B; Dörrer L; Hüger E; Borchardt G; Steitz R; Geckle U; Oberst V; Bruns M; Schneider O; Schmidt H
    Phys Chem Chem Phys; 2013 May; 15(20):7777-84. PubMed ID: 23598350
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nano active materials for lithium-ion batteries.
    Wang Y; Li H; He P; Hosono E; Zhou H
    Nanoscale; 2010 Aug; 2(8):1294-305. PubMed ID: 20820717
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ NMR of lithium ion batteries: bulk susceptibility effects and practical considerations.
    Trease NM; Zhou L; Chang HJ; Zhu BY; Grey CP
    Solid State Nucl Magn Reson; 2012 Apr; 42():62-70. PubMed ID: 22381594
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of electrode materials for lithium ion and sodium ion batteries using synchrotron radiation techniques.
    Doeff MM; Chen G; Cabana J; Richardson TJ; Mehta A; Shirpour M; Duncan H; Kim C; Kam KC; Conry T
    J Vis Exp; 2013 Nov; (81):e50594. PubMed ID: 24300777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Construction and testing of coin cells of lithium ion batteries.
    Kayyar A; Huang J; Samiee M; Luo J
    J Vis Exp; 2012 Aug; (66):e4104. PubMed ID: 22895280
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrothermal synthesis and electrochemical properties of Li₃V₂(PO₄)₃/C-based composites for lithium-ion batteries.
    Sun C; Rajasekhara S; Dong Y; Goodenough JB
    ACS Appl Mater Interfaces; 2011 Sep; 3(9):3772-6. PubMed ID: 21877744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In situ atomic force microscopy analysis of morphology and particle size changes in lithium iron phosphate cathode during discharge.
    Demirocak DE; Bhushan B
    J Colloid Interface Sci; 2014 Jun; 423():151-7. PubMed ID: 24703680
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon-Based Materials for Lithium-Ion Batteries, Electrochemical Capacitors, and Their Hybrid Devices.
    Yao F; Pham DT; Lee YH
    ChemSusChem; 2015 Jul; 8(14):2284-311. PubMed ID: 26140707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. X-ray absorption spectroscopy study of the LixFePO4 cathode during cycling using a novel electrochemical in situ reaction cell.
    Deb A; Bergmann U; Cairns EJ; Cramer SP
    J Synchrotron Radiat; 2004 Nov; 11(Pt 6):497-504. PubMed ID: 15496738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent Progress in Polymeric Carbonyl-Based Electrode Materials for Lithium and Sodium Ion Batteries.
    Amin K; Mao L; Wei Z
    Macromol Rapid Commun; 2019 Jan; 40(1):e1800565. PubMed ID: 30411834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A review on cellulose and lignin based binders and electrodes: Small steps towards a sustainable lithium ion battery.
    Nirmale TC; Kale BB; Varma AJ
    Int J Biol Macromol; 2017 Oct; 103():1032-1043. PubMed ID: 28554795
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Focused Ion Beam Fabrication of LiPON-based Solid-state Lithium-ion Nanobatteries for In Situ Testing.
    Lee JZ; Wynn TA; Meng YS; Santhanagopalan D
    J Vis Exp; 2018 Mar; (133):. PubMed ID: 29578496
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of the state of Lithium-Sulphur and lithium-ion batteries applied to electromobility.
    Benveniste G; Rallo H; Canals Casals L; Merino A; Amante B
    J Environ Manage; 2018 Nov; 226():1-12. PubMed ID: 30103198
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding Rechargeable Battery Function Using In Operando Neutron Powder Diffraction.
    Liang G; Didier C; Guo Z; Pang WK; Peterson VK
    Adv Mater; 2020 May; 32(18):e1904528. PubMed ID: 31544298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In Situ Investigation of Li and Na Ion Transport with Single Nanowire Electrochemical Devices.
    Xu X; Yan M; Tian X; Yang C; Shi M; Wei Q; Xu L; Mai L
    Nano Lett; 2015 Jun; 15(6):3879-84. PubMed ID: 25989463
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanostructured silicon anodes for lithium ion rechargeable batteries.
    Teki R; Datta MK; Krishnan R; Parker TC; Lu TM; Kumta PN; Koratkar N
    Small; 2009 Oct; 5(20):2236-42. PubMed ID: 19739146
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Turning an environmental problem into an opportunity: potential use of biochar derived from a harmful marine biomass named Cladophora glomerata as anode electrode for Li-ion batteries.
    Salimi P; Javadian S; Norouzi O; Gharibi H
    Environ Sci Pollut Res Int; 2017 Dec; 24(36):27974-27984. PubMed ID: 28990143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.