These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 25406760)

  • 21. Semiconductor photocatalysts: A critical review highlighting the various strategies to boost the photocatalytic performances for diverse applications.
    Ahmad I; Zou Y; Yan J; Liu Y; Shukrullah S; Naz MY; Hussain H; Khan WQ; Khalid NR
    Adv Colloid Interface Sci; 2023 Jan; 311():102830. PubMed ID: 36592501
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Semiconductor-based nanocomposites for photocatalytic H2 production and CO2 conversion.
    Fan W; Zhang Q; Wang Y
    Phys Chem Chem Phys; 2013 Feb; 15(8):2632-49. PubMed ID: 23322026
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electronic coupling in iron oxide-modified TiO2 leads to a reduced band gap and charge separation for visible light active photocatalysis.
    Nolan M
    Phys Chem Chem Phys; 2011 Oct; 13(40):18194-9. PubMed ID: 21922087
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhanced visible-light photocatalytic activity of plasmonic Ag and graphene co-modified Bi2WO6 nanosheets.
    Low J; Yu J; Li Q; Cheng B
    Phys Chem Chem Phys; 2014 Jan; 16(3):1111-20. PubMed ID: 24287866
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Adsorptive removal and photocatalytic degradation of organic pollutants using metal oxides and their composites: A comprehensive review.
    Gusain R; Gupta K; Joshi P; Khatri OP
    Adv Colloid Interface Sci; 2019 Oct; 272():102009. PubMed ID: 31445351
    [TBL] [Abstract][Full Text] [Related]  

  • 26. BiOX (X = Cl, Br, I) photocatalytic nanomaterials: Applications for fuels and environmental management.
    Yang Y; Zhang C; Lai C; Zeng G; Huang D; Cheng M; Wang J; Chen F; Zhou C; Xiong W
    Adv Colloid Interface Sci; 2018 Apr; 254():76-93. PubMed ID: 29602415
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting.
    Hisatomi T; Kubota J; Domen K
    Chem Soc Rev; 2014 Nov; 43(22):7520-35. PubMed ID: 24413305
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sulfonated graphene oxide-ZnO-Ag photocatalyst for fast photodegradation and disinfection under visible light.
    Gao P; Ng K; Sun DD
    J Hazard Mater; 2013 Nov; 262():826-35. PubMed ID: 24140534
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Whole-Visible-Light Absorption of a Mixed-Valence Silver Vanadate Semiconductor Stemming from an Assistant Effect of d-d Transition.
    Dong H; Chen G; Sun J; Li C; Hu Y; Han Z
    Inorg Chem; 2015 Dec; 54(24):11826-30. PubMed ID: 26616241
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Selective photoredox using graphene-based composite photocatalysts.
    Yang MQ; Xu YJ
    Phys Chem Chem Phys; 2013 Nov; 15(44):19102-18. PubMed ID: 24121632
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Efficient photocatalytic degradation of phenol over Co3O4/BiVO4 composite under visible light irradiation.
    Long M; Cai W; Cai J; Zhou B; Chai X; Wu Y
    J Phys Chem B; 2006 Oct; 110(41):20211-6. PubMed ID: 17034198
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hybrid artificial photosynthetic systems comprising semiconductors as light harvesters and biomimetic complexes as molecular cocatalysts.
    Wen F; Li C
    Acc Chem Res; 2013 Nov; 46(11):2355-64. PubMed ID: 23730891
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High-throughput screening using porous photoelectrode for the development of visible-light-responsive semiconductors.
    Arai T; Konishi Y; Iwasaki Y; Sugihara H; Sayama K
    J Comb Chem; 2007; 9(4):574-81. PubMed ID: 17571904
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Asymmetric Covalent Triazine Framework for Enhanced Visible-Light Photoredox Catalysis via Energy Transfer Cascade.
    Huang W; Byun J; Rörich I; Ramanan C; Blom PWM; Lu H; Wang D; Caire da Silva L; Li R; Wang L; Landfester K; Zhang KAI
    Angew Chem Int Ed Engl; 2018 Jul; 57(27):8316-8320. PubMed ID: 29722108
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications.
    Pan X; Yang MQ; Fu X; Zhang N; Xu YJ
    Nanoscale; 2013 May; 5(9):3601-14. PubMed ID: 23532413
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Visible light water splitting using dye-sensitized oxide semiconductors.
    Youngblood WJ; Lee SH; Maeda K; Mallouk TE
    Acc Chem Res; 2009 Dec; 42(12):1966-73. PubMed ID: 19905000
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Semiconductor photocatalysts for water oxidation: current status and challenges.
    Yang L; Zhou H; Fan T; Zhang D
    Phys Chem Chem Phys; 2014 Apr; 16(15):6810-26. PubMed ID: 24599528
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Visible-light-responsive photocatalysts toward water oxidation based on NiTi-layered double hydroxide/reduced graphene oxide composite materials.
    Li B; Zhao Y; Zhang S; Gao W; Wei M
    ACS Appl Mater Interfaces; 2013 Oct; 5(20):10233-9. PubMed ID: 24066609
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nanomaterials as Photocatalysts-Synthesis and Their Potential Applications.
    Feliczak-Guzik A
    Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614532
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Recent progress in the development of carbonate-intercalated Zn/Cr LDH as a novel photocatalyst for hydrogen evolution aimed at the utilization of solar light.
    Parida K; Mohapatra L
    Dalton Trans; 2012 Jan; 41(4):1173-8. PubMed ID: 22113466
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.