These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 25406826)

  • 1. Three-dimensional scanning near field optical microscopy (3D-SNOM) imaging of random arrays of copper nanoparticles: implications for plasmonic solar cell enhancement.
    Ezugwu S; Ye H; Fanchini G
    Nanoscale; 2015 Jan; 7(1):252-60. PubMed ID: 25406826
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Broadband absorption enhancement achieved by optical layer mediated plasmonic solar cell.
    Ren W; Zhang G; Wu Y; Ding H; Shen Q; Zhang K; Li J; Pan N; Wang X
    Opt Express; 2011 Dec; 19(27):26536-50. PubMed ID: 22274238
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward omnidirectional light absorption by plasmonic effect for high-efficiency flexible nonvacuum Cu(In,Ga)Se2 thin film solar cells.
    Chen SC; Chen YJ; Chen WT; Yen YT; Kao TS; Chuang TY; Liao YK; Wu KH; Yabushita A; Hsieh TP; Charlton MD; Tsai DP; Kuo HC; Chueh YL
    ACS Nano; 2014 Sep; 8(9):9341-8. PubMed ID: 25093682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmon-induced efficiency enhancement on dye-sensitized solar cell by a 3D TNW-AuNP layer.
    Yen YC; Chen PH; Chen JZ; Chen JA; Lin KJ
    ACS Appl Mater Interfaces; 2015 Jan; 7(3):1892-8. PubMed ID: 25548958
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Near-field microscopy and lithography of light-emitting polymers.
    Richards D; Cacialli F
    Philos Trans A Math Phys Eng Sci; 2004 Apr; 362(1817):771-86. PubMed ID: 15306493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. E-beam deposited Ag-nanoparticles plasmonic organic solar cell and its absorption enhancement analysis using FDTD-based cylindrical nano-particle optical model.
    Kim RS; Zhu J; Park JH; Li L; Yu Z; Shen H; Xue M; Wang KL; Park G; Anderson TJ; Pei Q
    Opt Express; 2012 Jun; 20(12):12649-57. PubMed ID: 22714293
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of a near-field optical probe to locally launch surface plasmon polaritons on plasmonic waveguides: a study by the finite difference time domain method.
    Hwang BS; Kwon MH; Kim J
    Microsc Res Tech; 2004 Aug; 64(5-6):453-8. PubMed ID: 15549697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineered optical properties of silver-aluminum alloy nanoparticles embedded in SiON matrix for maximizing light confinement in plasmonic silicon solar cells.
    Parashar PK; Komarala VK
    Sci Rep; 2017 Oct; 7(1):12520. PubMed ID: 28970541
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrathin, high-efficiency, broad-band, omni-acceptance, organic solar cells enhanced by plasmonic cavity with subwavelength hole array.
    Chou SY; Ding W
    Opt Express; 2013 Jan; 21 Suppl 1():A60-76. PubMed ID: 23389276
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmonic polymer tandem solar cell.
    Yang J; You J; Chen CC; Hsu WC; Tan HR; Zhang XW; Hong Z; Yang Y
    ACS Nano; 2011 Aug; 5(8):6210-7. PubMed ID: 21749062
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmonic organic solar cells employing nanobump assembly via aerosol-derived nanoparticles.
    Jung K; Song HJ; Lee G; Ko Y; Ahn K; Choi H; Kim JY; Ha K; Song J; Lee JK; Lee C; Choi M
    ACS Nano; 2014 Mar; 8(3):2590-601. PubMed ID: 24533831
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement of PbS quantum dot-sensitized photocurrents using plasmonic gold nanoparticles.
    Kawawaki T; Tatsuma T
    Phys Chem Chem Phys; 2013 Dec; 15(46):20247-51. PubMed ID: 24162732
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmonic effect of spray-deposited Au nanoparticles on the performance of inverted organic solar cells.
    Chaturvedi N; Swami SK; Dutta V
    Nanoscale; 2014 Sep; 6(18):10772-8. PubMed ID: 25100621
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D branched ZnO nanowire arrays decorated with plasmonic au nanoparticles for high-performance photoelectrochemical water splitting.
    Zhang X; Liu Y; Kang Z
    ACS Appl Mater Interfaces; 2014 Mar; 6(6):4480-9. PubMed ID: 24598779
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient plasmonic scattering of colloidal silver particles through annealing-induced changes.
    Ott A; Ring S; Yin G; Calvet W; Stannowski B; Schlatmann R; Ballauff M
    Nanotechnology; 2014 Nov; 25(45):455706. PubMed ID: 25338823
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cu nanoparticles enable plasmonic-improved silicon photovoltaic devices.
    de Souza ML; Corio P; Brolo AG
    Phys Chem Chem Phys; 2012 Dec; 14(45):15722-8. PubMed ID: 23090151
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synergistic plasmonic and photonic crystal light-trapping: architectures for optical up-conversion in thin-film solar cells.
    Le KQ; John S
    Opt Express; 2014 Jan; 22 Suppl 1():A1-12. PubMed ID: 24921986
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Au@polymer core-shell nanoparticles for simultaneously enhancing efficiency and ambient stability of organic optoelectronic devices.
    Kim T; Kang H; Jeong S; Kang DJ; Lee C; Lee CH; Seo MK; Lee JY; Kim BJ
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):16956-65. PubMed ID: 25226068
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly absorbing solar cells--a survey of plasmonic nanostructures.
    Dunbar RB; Pfadler T; Schmidt-Mende L
    Opt Express; 2012 Mar; 20 Suppl 2():A177-89. PubMed ID: 22418666
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of light scattering from human breast tissue using a custom dual-optical scanning near-field optical microscope.
    Kyle JR; Kyle MD; Raghavan R; Budak G; Ozkan CS; Ozkan M
    J Biophotonics; 2011 Mar; 4(3):193-205. PubMed ID: 20740520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.