These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
362 related articles for article (PubMed ID: 25406958)
1. Chronic escitalopram treatment attenuated the accelerated rapid eye movement sleep transitions after selective rapid eye movement sleep deprivation: a model-based analysis using Markov chains. Kostyalik D; Vas S; Kátai Z; Kitka T; Gyertyán I; Bagdy G; Tóthfalusi L BMC Neurosci; 2014 Nov; 15():120. PubMed ID: 25406958 [TBL] [Abstract][Full Text] [Related]
2. Acute escitalopram treatment inhibits REM sleep rebound and activation of MCH-expressing neurons in the lateral hypothalamus after long term selective REM sleep deprivation. Kátai Z; Adori C; Kitka T; Vas S; Kalmár L; Kostyalik D; Tóthfalusi L; Palkovits M; Bagdy G Psychopharmacology (Berl); 2013 Aug; 228(3):439-49. PubMed ID: 23515582 [TBL] [Abstract][Full Text] [Related]
3. Chronic escitalopram treatment caused dissociative adaptation in serotonin (5-HT) 2C receptor antagonist-induced effects in REM sleep, wake and theta wave activity. Kostyalik D; Kátai Z; Vas S; Pap D; Petschner P; Molnár E; Gyertyán I; Kalmár L; Tóthfalusi L; Bagdy G Exp Brain Res; 2014 Mar; 232(3):935-46. PubMed ID: 24395141 [TBL] [Abstract][Full Text] [Related]
4. Differential adaptation of REM sleep latency, intermediate stage and theta power effects of escitalopram after chronic treatment. Vas S; Kátai Z; Kostyalik D; Pap D; Molnár E; Petschner P; Kalmár L; Bagdy G J Neural Transm (Vienna); 2013 Jan; 120(1):169-76. PubMed ID: 22729519 [TBL] [Abstract][Full Text] [Related]
5. Small platform sleep deprivation selectively increases the average duration of rapid eye movement sleep episodes during sleep rebound. Kitka T; Katai Z; Pap D; Molnar E; Adori C; Bagdy G Behav Brain Res; 2009 Dec; 205(2):482-7. PubMed ID: 19665493 [TBL] [Abstract][Full Text] [Related]
6. Citalopram: differential sleep/wake and EEG power spectrum effects after single dose and chronic administration. Neckelmann D; Bjorvatn B; Bjørkum AA; Ursin R Behav Brain Res; 1996 Sep; 79(1-2):183-92. PubMed ID: 8883829 [TBL] [Abstract][Full Text] [Related]
7. Reduced inhibitory potency of serotonin reuptake blockers on central serotoninergic neurons in rats selectively deprived of rapid eye movement sleep. Maudhuit C; Jolas T; Chastanet M; Hamon M; Adrien J Biol Psychiatry; 1996 Nov; 40(10):1000-7. PubMed ID: 8915559 [TBL] [Abstract][Full Text] [Related]
8. Effect of chronic treatment with milnacipran on sleep architecture in rats compared with paroxetine and imipramine. Gervasoni D; Panconi E; Henninot V; Boissard R; Barbagli B; Fort P; Luppi PH Pharmacol Biochem Behav; 2002 Oct; 73(3):557-63. PubMed ID: 12151030 [TBL] [Abstract][Full Text] [Related]
9. Isoflurane anesthesia does not satisfy the homeostatic need for rapid eye movement sleep. Mashour GA; Lipinski WJ; Matlen LB; Walker AJ; Turner AM; Schoen W; Lee U; Poe GR Anesth Analg; 2010 May; 110(5):1283-9. PubMed ID: 20418293 [TBL] [Abstract][Full Text] [Related]
10. Acute and chronic escitalopram alter EEG gamma oscillations differently: relevance to therapeutic effects. Papp N; Vas S; Bogáthy E; Kátai Z; Kostyalik D; Bagdy G Eur J Pharm Sci; 2018 Aug; 121():347-355. PubMed ID: 29908300 [TBL] [Abstract][Full Text] [Related]
11. Behavioral sleep-wake homeostasis and EEG delta power are decoupled by chronic sleep restriction in the rat. Stephenson R; Caron AM; Famina S Sleep; 2015 May; 38(5):685-97. PubMed ID: 25669184 [TBL] [Abstract][Full Text] [Related]
12. Sleep and EEG power spectrum effects of the 5-HT1A antagonist NAN-190 alone and in combination with citalopram. Neckelmann D; Bjørkum AA; Bjorvatn B; Ursin R Behav Brain Res; 1996 Feb; 75(1-2):159-68. PubMed ID: 8800653 [TBL] [Abstract][Full Text] [Related]
13. The acute inhibition of rapid eye movement sleep by citalopram may impair spatial learning and passive avoidance in mice. Bridoux A; Laloux C; Derambure P; Bordet R; Monaca Charley C J Neural Transm (Vienna); 2013 Mar; 120(3):383-9. PubMed ID: 23053350 [TBL] [Abstract][Full Text] [Related]
14. Essential roles of GABA transporter-1 in controlling rapid eye movement sleep and in increased slow wave activity after sleep deprivation. Xu XH; Qu WM; Bian MJ; Huang F; Fei J; Urade Y; Huang ZL PLoS One; 2013; 8(10):e75823. PubMed ID: 24155871 [TBL] [Abstract][Full Text] [Related]
15. REM sleep homeostasis in the absence of REM sleep: Effects of antidepressants. McCarthy A; Wafford K; Shanks E; Ligocki M; Edgar DM; Dijk DJ Neuropharmacology; 2016 Sep; 108():415-25. PubMed ID: 27150557 [TBL] [Abstract][Full Text] [Related]
16. A selective serotonin reuptake inhibitor reduces REM sleep in the homing pigeon. Fuchs T; Siegel JJ; Burgdorf J; Bingman VP Physiol Behav; 2006 Mar; 87(3):575-81. PubMed ID: 16469340 [TBL] [Abstract][Full Text] [Related]
17. [Mechanisms of action of antidepressants: new data from Escitalopram]. Fabre V; Hamon M Encephale; 2003; 29(3 Pt 1):259-65. PubMed ID: 12876551 [TBL] [Abstract][Full Text] [Related]
18. The effects of sleep deprivation in humans: topographical electroencephalogram changes in non-rapid eye movement (NREM) sleep versus REM sleep. Marzano C; Ferrara M; Curcio G; De Gennaro L J Sleep Res; 2010 Jun; 19(2):260-8. PubMed ID: 19845849 [TBL] [Abstract][Full Text] [Related]
19. Rapid eye movement (REM) sleep homeostatic regulatory processes in the rat: changes in the sleep-wake stages and electroencephalographic power spectra. Shea JL; Mochizuki T; Sagvaag V; Aspevik T; Bjorkum AA; Datta S Brain Res; 2008 Jun; 1213():48-56. PubMed ID: 18455709 [TBL] [Abstract][Full Text] [Related]
20. Antidepressants and REM sleep in Wistar-Kyoto and Sprague-Dawley rats. Ivarsson M; Paterson LM; Hutson PH Eur J Pharmacol; 2005 Oct; 522(1-3):63-71. PubMed ID: 16223479 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]