These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 25407102)

  • 1. Photocatalytic oxidation of organic compounds in a hybrid system composed of a molecular catalyst and visible light-absorbing semiconductor.
    Zhou X; Li F; Li X; Li H; Wang Y; Sun L
    Dalton Trans; 2015 Jan; 44(2):475-9. PubMed ID: 25407102
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly efficient and selective photocatalytic oxidation of sulfide by a chromophore-catalyst dyad of ruthenium-based complexes.
    Li TT; Li FM; Zhao WL; Tian YH; Chen Y; Cai R; Fu WF
    Inorg Chem; 2015 Jan; 54(1):183-91. PubMed ID: 25526316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multinary I-III-VI2 and I2-II-IV-VI4 Semiconductor Nanostructures for Photocatalytic Applications.
    Regulacio MD; Han MY
    Acc Chem Res; 2016 Mar; 49(3):511-9. PubMed ID: 26864703
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photochemical Stereocontrol Using Tandem Photoredox-Chiral Lewis Acid Catalysis.
    Yoon TP
    Acc Chem Res; 2016 Oct; 49(10):2307-2315. PubMed ID: 27505691
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A polymeric-semiconductor-metal-complex hybrid photocatalyst for visible-light CO(2) reduction.
    Maeda K; Sekizawa K; Ishitani O
    Chem Commun (Camb); 2013 Oct; 49(86):10127-9. PubMed ID: 24048317
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visible light water splitting using dye-sensitized oxide semiconductors.
    Youngblood WJ; Lee SH; Maeda K; Mallouk TE
    Acc Chem Res; 2009 Dec; 42(12):1966-73. PubMed ID: 19905000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visible light-sensitive ZnGe oxynitride catalysts for the decomposition of organic pollutants in water.
    Huang J; Cui Y; Wang X
    Environ Sci Technol; 2010 May; 44(9):3500-4. PubMed ID: 20387874
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photocatalytic water oxidation by molecular assemblies based on cobalt catalysts.
    Zhou X; Li F; Li H; Zhang B; Yu F; Sun L
    ChemSusChem; 2014 Sep; 7(9):2453-6. PubMed ID: 25111070
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sonication-induced pathways in the synthesis of light-active catalysts for photocatalytic oxidation of organic contaminants.
    Colmenares JC
    ChemSusChem; 2014 Jun; 7(6):1512-27. PubMed ID: 24965345
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immobilization of ruthenium in organic-inorganic hybrid copolymers: a reusable heterogeneous catalyst for oxidation of alcohols with molecular oxygen.
    Matsumoto T; Ueno M; Wang N; Kobayashi S
    Chem Asian J; 2008 Feb; 3(2):239-43. PubMed ID: 18188860
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photoinduced water oxidation by a tetraruthenium polyoxometalate catalyst: ion-pairing and primary processes with Ru(bpy)3(2+) photosensitizer.
    Natali M; Orlandi M; Berardi S; Campagna S; Bonchio M; Sartorel A; Scandola F
    Inorg Chem; 2012 Jul; 51(13):7324-31. PubMed ID: 22686248
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A hybrid photocatalytic system comprising ZnS as light harvester and an [Fe(2)S(2)] hydrogenase mimic as hydrogen evolution catalyst.
    Wen F; Wang X; Huang L; Ma G; Yang J; Li C
    ChemSusChem; 2012 May; 5(5):849-53. PubMed ID: 22539196
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-electron oxygen reduction by a hybrid visible-light-photocatalyst consisting of metal-oxide semiconductor and self-assembled biomimetic complex.
    Naya S; Niwa T; Negishi R; Kobayashi H; Tada H
    Angew Chem Int Ed Engl; 2014 Dec; 53(50):13894-7. PubMed ID: 25287731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High turnover in a photocatalytic system for water reduction to produce hydrogen using a Ru,  Rh,  Ru photoinitiated electron collector.
    Arachchige SM; Shaw R; White TA; Shenoy V; Tsui HM; Brewer KJ
    ChemSusChem; 2011 Apr; 4(4):514-8. PubMed ID: 21438156
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmon-assisted degradation of methylene blue with Ag/AgCl/montmorillonite nanocomposite under visible light.
    Sohrabnezhad Sh; Zanjanchi MA; Razavi M
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Sep; 130():129-35. PubMed ID: 24769384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enabling light-driven water oxidation via a low-energy RuIV=O intermediate.
    Lewandowska-Andralojc A; Polyansky DE; Zong R; Thummel RP; Fujita E
    Phys Chem Chem Phys; 2013 Sep; 15(33):14058-68. PubMed ID: 23860663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combination of visible-light responsive heterogeneous and homogeneous photocatalysts for water oxidation.
    Fukuzumi S; Kato S; Suenobu T
    Phys Chem Chem Phys; 2011 Oct; 13(40):17960-3. PubMed ID: 21931899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hybrid artificial photosynthetic systems comprising semiconductors as light harvesters and biomimetic complexes as molecular cocatalysts.
    Wen F; Li C
    Acc Chem Res; 2013 Nov; 46(11):2355-64. PubMed ID: 23730891
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Making oxygen with ruthenium complexes.
    Concepcion JJ; Jurss JW; Brennaman MK; Hoertz PG; Patrocinio AO; Murakami Iha NY; Templeton JL; Meyer TJ
    Acc Chem Res; 2009 Dec; 42(12):1954-65. PubMed ID: 19817345
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Artificial photosynthesis: semiconductor photocatalytic fixation of CO2 to afford higher organic compounds.
    Hoffmann MR; Moss JA; Baum MM
    Dalton Trans; 2011 May; 40(19):5151-8. PubMed ID: 21373667
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.