BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 25407103)

  • 1. Correlating enzyme density, conformation and activity on nanoparticle surfaces in highly functional bio-nanocomposites.
    Saha B; Saikia J; Das G
    Analyst; 2015 Jan; 140(2):532-42. PubMed ID: 25407103
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Covalent immobilization of porcine pancreatic lipase on carboxyl-activated magnetic nanoparticles: characterization and application for enzymatic inhibition assays.
    Zhu YT; Ren XY; Liu YM; Wei Y; Qing LS; Liao X
    Mater Sci Eng C Mater Biol Appl; 2014 May; 38():278-85. PubMed ID: 24656379
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of gold nanoparticle assembled polyurethane microsphere template in trypsin immobilization.
    Kotal M; Srivastava SK; Maiti TK
    J Nanosci Nanotechnol; 2011 Nov; 11(11):10149-57. PubMed ID: 22413358
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immobilized trypsin on hydrophobic cellulose decorated nanoparticles shows good stability and reusability for protein digestion.
    Sun X; Cai X; Wang RQ; Xiao J
    Anal Biochem; 2015 May; 477():21-7. PubMed ID: 25700866
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immobilization of trypsin on plasma prepared Ag/PPAni nanocomposite film for efficient digestion of protein.
    Gogoi D; Barman T; Choudhury B; Khan M; Chaudhari Y; Dehingia M; Pal AR; Bailung H; Chutia J
    Mater Sci Eng C Mater Biol Appl; 2014 Oct; 43():237-42. PubMed ID: 25175210
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrophilic immobilized trypsin reactor with magnetic graphene oxide as support for high efficient proteome digestion.
    Jiang B; Yang K; Zhao Q; Wu Q; Liang Z; Zhang L; Peng X; Zhang Y
    J Chromatogr A; 2012 Sep; 1254():8-13. PubMed ID: 22871380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microscale enzyme reactors comprising gold nanoparticles with immobilized trypsin for efficient protein digestion.
    Safdar M; Spross J; Jänis J
    J Mass Spectrom; 2013 Dec; 48(12):1281-4. PubMed ID: 24338882
    [No Abstract]   [Full Text] [Related]  

  • 8. Rational synthesis of novel recyclable Fe₃O₄@MOF nanocomposites for enzymatic digestion.
    Zhao M; Zhang X; Deng C
    Chem Commun (Camb); 2015 May; 51(38):8116-9. PubMed ID: 25869528
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ammonia plasma treated polyethylene films for adsorption or covalent immobilization of trypsin: quantitative correlation between X-ray photoelectron spectroscopy data and enzyme activity.
    Ghasemi M; Minier MJ; Tatoulian M; Chehimi MM; Arefi-Khonsari F
    J Phys Chem B; 2011 Sep; 115(34):10228-38. PubMed ID: 21770448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioconjugation of trypsin onto gold nanoparticles: effect of surface chemistry on bioactivity.
    Hinterwirth H; Lindner W; Lämmerhofer M
    Anal Chim Acta; 2012 Jul; 733():90-7. PubMed ID: 22704381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. pH-dependent immobilization of urease on glutathione-capped gold nanoparticles.
    Garg S; De A; Mozumdar S
    J Biomed Mater Res A; 2015 May; 103(5):1771-83. PubMed ID: 25227875
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metal sulfide nanoparticles synthesized via enzyme treatment of biopolymer stabilized nanosuspensions.
    Kim YY; Walsh D
    Nanoscale; 2010 Feb; 2(2):240-7. PubMed ID: 20644800
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Local field enhanced Au/CuS nanocomposites as efficient photothermal transducer agents for cancer treatment.
    Lakshmanan SB; Zou X; Hossu M; Ma L; Yang C; Chen W
    J Biomed Nanotechnol; 2012 Dec; 8(6):883-90. PubMed ID: 23029996
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trypsin immobilization on hairy polymer chains hybrid magnetic nanoparticles for ultra fast, highly efficient proteome digestion, facile 18O labeling and absolute protein quantification.
    Qin W; Song Z; Fan C; Zhang W; Cai Y; Zhang Y; Qian X
    Anal Chem; 2012 Apr; 84(7):3138-44. PubMed ID: 22413971
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation and characterization of nanoparticles containing trypsin based on hydrophobically modified chitosan.
    Liu CG; Desai KG; Chen XG; Park HJ
    J Agric Food Chem; 2005 Mar; 53(5):1728-33. PubMed ID: 15740066
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation of well-dispersed gold/magnetite nanoparticles embedded on cellulose nanocrystals for efficient immobilization of papain enzyme.
    Mahmoud KA; Lam E; Hrapovic S; Luong JH
    ACS Appl Mater Interfaces; 2013 Jun; 5(11):4978-85. PubMed ID: 23676842
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The stabilization of Au NP-AChE nanocomposites by biosilica encapsulation for the development of a thiocholine biosensor.
    Buiculescu R; Chaniotakis NA
    Bioelectrochemistry; 2012 Aug; 86():72-7. PubMed ID: 22421347
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immobilization and kinetics of catalase on calcium carbonate nanoparticles attached epoxy support.
    Preety ; Hooda V
    Appl Biochem Biotechnol; 2014 Jan; 172(1):115-30. PubMed ID: 24048961
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient proteolysis using a regenerable metal-ion chelate immobilized enzyme reactor supported on organic-inorganic hybrid silica monolith.
    Ma J; Hou C; Liang Y; Wang T; Liang Z; Zhang L; Zhang Y
    Proteomics; 2011 Mar; 11(5):991-5. PubMed ID: 21280225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carrier free immobilization and characterization of trypsin.
    Menfaatli E; Zihnioglu F
    Artif Cells Nanomed Biotechnol; 2015 Apr; 43(2):140-4. PubMed ID: 24195581
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.