BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 25407107)

  • 1. State-of-the-art of recycling e-wastes by vacuum metallurgy separation.
    Zhan L; Xu Z
    Environ Sci Technol; 2014 Dec; 48(24):14092-102. PubMed ID: 25407107
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of heavy metals exposure, noise and thermal safety in the ambiance of a vacuum metallurgy separation system for recycling heavy metals from crushed e-wastes.
    Zhan L; Xu Z
    Waste Manag Res; 2014 Dec; 32(12):1247-53. PubMed ID: 25391553
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recovery of metals and nonmetals from electronic waste by physical and chemical recycling processes.
    Kaya M
    Waste Manag; 2016 Nov; 57():64-90. PubMed ID: 27543174
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Separating and recycling metals from mixed metallic particles of crushed electronic wastes by vacuum metallurgy.
    Zhan L; Xu Z
    Environ Sci Technol; 2009 Sep; 43(18):7074-8. PubMed ID: 19806744
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel process for recovering valuable metals from waste nickel-cadmium batteries.
    Huang K; Li J; Xu Z
    Environ Sci Technol; 2009 Dec; 43(23):8974-8. PubMed ID: 19943675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards minimization of secondary wastes: Element recycling to achieve future complete resource recycling of electronic wastes.
    Zhang L; Xu Z
    Waste Manag; 2019 Aug; 96():175-180. PubMed ID: 31376962
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recycling of waste lead storage battery by vacuum methods.
    Lin D; Qiu K
    Waste Manag; 2011 Jul; 31(7):1547-52. PubMed ID: 21419616
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The BATINTREC process for reclaiming used batteries.
    Xia YQ; Li GJ
    Waste Manag; 2004; 24(4):359-63. PubMed ID: 15081063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Concentration of precious metals during their recovery from electronic waste.
    Cayumil R; Khanna R; Rajarao R; Mukherjee PS; Sahajwalla V
    Waste Manag; 2016 Nov; 57():121-130. PubMed ID: 26712661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Separation and recovery of heavy metals zinc and lead from phosphorus flue dust by vacuum metallurgy.
    Ji W; Xie K; Yan S
    J Environ Manage; 2021 Sep; 294():113001. PubMed ID: 34111595
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recycling of non-metallic fractions from waste electrical and electronic equipment (WEEE): a review.
    Wang R; Xu Z
    Waste Manag; 2014 Aug; 34(8):1455-69. PubMed ID: 24726822
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using vacuum pyrolysis and mechanical processing for recycling waste printed circuit boards.
    Long L; Sun S; Zhong S; Dai W; Liu J; Song W
    J Hazard Mater; 2010 May; 177(1-3):626-32. PubMed ID: 20060640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Environmental effects of heavy metals derived from the e-waste recycling activities in China: a systematic review.
    Song Q; Li J
    Waste Manag; 2014 Dec; 34(12):2587-94. PubMed ID: 25242606
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Separating and recycling metal mixture of pyrolyzed waste printed circuit boards by a combined method.
    Chen B; He J; Sun X; Zhao J; Jiang H; Zhang L
    Waste Manag; 2020 Apr; 107():113-120. PubMed ID: 32278216
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recycling metals from wastes: a novel application of mechanochemistry.
    Tan Q; Li J
    Environ Sci Technol; 2015 May; 49(10):5849-61. PubMed ID: 25884338
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biohydrometallurgy for Rare Earth Elements Recovery from Industrial Wastes.
    Castro L; Blázquez ML; González F; Muñoz JÁ
    Molecules; 2021 Oct; 26(20):. PubMed ID: 34684778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Status of electronic waste recycling techniques: a review.
    Abdelbasir SM; Hassan SSM; Kamel AH; El-Nasr RS
    Environ Sci Pollut Res Int; 2018 Jun; 25(17):16533-16547. PubMed ID: 29737485
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biohydrometallurgy as an environmentally friendly approach in metals recovery from electrical waste: A review.
    Habibi A; Shamshiri Kourdestani S; Hadadi M
    Waste Manag Res; 2020 Mar; 38(3):232-244. PubMed ID: 31918634
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monitoring the Resources and Environmental Impacts from the Precise Disassembly of E-Waste in China.
    Yu Z; Tian X; Gao Y; Yuan X; Xu Z; Zhang L
    Environ Sci Technol; 2023 Jun; 57(22):8256-8268. PubMed ID: 37212265
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel recycle technology for recovering rare metals (Ga, In) from waste light-emitting diodes.
    Zhan L; Xia F; Ye Q; Xiang X; Xie B
    J Hazard Mater; 2015 Dec; 299():388-94. PubMed ID: 26150281
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.