BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 25407319)

  • 1. Flavonoid supplementation affects the expression of genes involved in cell wall formation and lignification metabolism and increases sugar content and saccharification in the fast-growing eucalyptus hybrid E. urophylla x E. grandis.
    Lepikson-Neto J; Nascimento LC; Salazar MM; Camargo EL; Cairo JP; Teixeira PJ; Marques WL; Squina FM; Mieczkowski P; Deckmann AC; Pereira GA
    BMC Plant Biol; 2014 Nov; 14():301. PubMed ID: 25407319
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contrasting nitrogen fertilization treatments impact xylem gene expression and secondary cell wall lignification in Eucalyptus.
    Camargo EL; Nascimento LC; Soler M; Salazar MM; Lepikson-Neto J; Marques WL; Alves A; Teixeira PJ; Mieczkowski P; Carazzolle MF; Martinez Y; Deckmann AC; Rodrigues JC; Grima-Pettenati J; Pereira GA
    BMC Plant Biol; 2014 Sep; 14():256. PubMed ID: 25260963
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigating the molecular underpinnings underlying morphology and changes in carbon partitioning during tension wood formation in Eucalyptus.
    Mizrachi E; Maloney VJ; Silberbauer J; Hefer CA; Berger DK; Mansfield SD; Myburg AA
    New Phytol; 2015 Jun; 206(4):1351-63. PubMed ID: 25388807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Eucalyptus hairy roots, a fast, efficient and versatile tool to explore function and expression of genes involved in wood formation.
    Plasencia A; Soler M; Dupas A; Ladouce N; Silva-Martins G; Martinez Y; Lapierre C; Franche C; Truchet I; Grima-Pettenati J
    Plant Biotechnol J; 2016 Jun; 14(6):1381-93. PubMed ID: 26579999
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptional Profiles of Hybrid Eucalyptus Genotypes with Contrasting Lignin Content Reveal That Monolignol Biosynthesis-related Genes Regulate Wood Composition.
    Shinya T; Iwata E; Nakahama K; Fukuda Y; Hayashi K; Nanto K; Rosa AC; Kawaoka A
    Front Plant Sci; 2016; 7():443. PubMed ID: 27148283
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genes expression profiles in vascular cambium of Eucalyptus urophylla × Eucalyptus grandis at different ages.
    Liu G; Wu Z; Luo J; Wang C; Shang X; Zhang G
    BMC Plant Biol; 2023 Oct; 23(1):500. PubMed ID: 37848837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A model system to study the lignification process in Eucalyptus globulus.
    Araújo P; Cesarino I; Mayer JL; Ferrari IF; Kiyota E; Sawaya AC; Paes Leme AF; Mazzafera P
    Physiol Plant; 2014 Sep; 152(1):17-31. PubMed ID: 24444279
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring the effect of different plant lignin content and composition on ionic liquid pretreatment efficiency and enzymatic saccharification of Eucalyptus globulus L. mutants.
    Papa G; Varanasi P; Sun L; Cheng G; Stavila V; Holmes B; Simmons BA; Adani F; Singh S
    Bioresour Technol; 2012 Aug; 117():352-9. PubMed ID: 22634318
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide analysis of the lignin toolbox of Eucalyptus grandis.
    Carocha V; Soler M; Hefer C; Cassan-Wang H; Fevereiro P; Myburg AA; Paiva JA; Grima-Pettenati J
    New Phytol; 2015 Jun; 206(4):1297-313. PubMed ID: 25684249
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-wide mapping of histone H3 lysine 4 trimethylation in Eucalyptus grandis developing xylem.
    Hussey SG; Mizrachi E; Groover A; Berger DK; Myburg AA
    BMC Plant Biol; 2015 May; 15():117. PubMed ID: 25957781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wood Architecture and Composition Are Deeply Remodeled in Frost Sensitive
    Cao PB; Ployet R; Nguyen C; Dupas A; Ladouce N; Martinez Y; Grima-Pettenati J; Marque C; Mounet F; Teulières C
    Int J Mol Sci; 2020 Apr; 21(8):. PubMed ID: 32344718
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A systems biology view of wood formation in Eucalyptus grandis trees submitted to different potassium and water regimes.
    Ployet R; Veneziano Labate MT; Regiani Cataldi T; Christina M; Morel M; San Clemente H; Denis M; Favreau B; Tomazello Filho M; Laclau JP; Labate CA; Chaix G; Grima-Pettenati J; Mounet F
    New Phytol; 2019 Jul; 223(2):766-782. PubMed ID: 30887522
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical responses to modified lignin composition in tension wood of hybrid poplar (Populus tremula x Populus alba).
    Al-Haddad JM; Kang KY; Mansfield SD; Telewski FW
    Tree Physiol; 2013 Apr; 33(4):365-73. PubMed ID: 23515474
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Eucalyptus grandis R2R3-MYB transcription factor family: evidence for woody growth-related evolution and function.
    Soler M; Camargo EL; Carocha V; Cassan-Wang H; San Clemente H; Savelli B; Hefer CA; Paiva JA; Myburg AA; Grima-Pettenati J
    New Phytol; 2015 Jun; 206(4):1364-77. PubMed ID: 25250741
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Xylem transcription profiles indicate potential metabolic responses for economically relevant characteristics of Eucalyptus species.
    Salazar MM; Nascimento LC; Camargo EL; Gonçalves DC; Lepikson Neto J; Marques WL; Teixeira PJ; Mieczkowski P; Mondego JM; Carazzolle MF; Deckmann AC; Pereira GA
    BMC Genomics; 2013 Mar; 14():201. PubMed ID: 23521840
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural and chemical characterization of hardwood from tree species with applications as bioenergy feedstocks.
    Cetinkol ÖP; Smith-Moritz AM; Cheng G; Lao J; George A; Hong K; Henry R; Simmons BA; Heazlewood JL; Holmes BM
    PLoS One; 2012; 7(12):e52820. PubMed ID: 23300786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrated analysis of gene expression from carbon metabolism, proteome and metabolome, reveals altered primary metabolism in Eucalyptus grandis bark, in response to seasonal variation.
    Budzinski IG; Moon DH; Morosini JS; Lindén P; Bragatto J; Moritz T; Labate CA
    BMC Plant Biol; 2016 Jul; 16(1):149. PubMed ID: 27364638
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative genetic parameters for growth and wood properties in Eucalyptus "urograndis" hybrid using near-infrared phenotyping and genome-wide SNP-based relationships.
    Marco de Lima B; Cappa EP; Silva-Junior OB; Garcia C; Mansfield SD; Grattapaglia D
    PLoS One; 2019; 14(6):e0218747. PubMed ID: 31233563
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential expression of three eucalyptus secondary cell wall-related cellulose synthase genes in response to tension stress.
    Lu S; Li L; Yi X; Joshi CP; Chiang VL
    J Exp Bot; 2008; 59(3):681-95. PubMed ID: 18281718
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RNA-seq analysis of lignocellulose-related genes in hybrid Eucalyptus with contrasting wood basic density.
    Nakahama K; Urata N; Shinya T; Hayashi K; Nanto K; Rosa AC; Kawaoka A
    BMC Plant Biol; 2018 Aug; 18(1):156. PubMed ID: 30081831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.