These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
292 related articles for article (PubMed ID: 25407321)
1. Distribution, classification, domain architectures and evolution of prolyl oligopeptidases in prokaryotic lineages. Kaushik S; Sowdhamini R BMC Genomics; 2014 Nov; 15(1):985. PubMed ID: 25407321 [TBL] [Abstract][Full Text] [Related]
2. Evolutionary relationships of the prolyl oligopeptidase family enzymes. Venäläinen JI; Juvonen RO; Männistö PT Eur J Biochem; 2004 Jul; 271(13):2705-15. PubMed ID: 15206935 [TBL] [Abstract][Full Text] [Related]
3. The p-type ATPase superfamily. Chan H; Babayan V; Blyumin E; Gandhi C; Hak K; Harake D; Kumar K; Lee P; Li TT; Liu HY; Lo TC; Meyer CJ; Stanford S; Zamora KS; Saier MH J Mol Microbiol Biotechnol; 2010; 19(1-2):5-104. PubMed ID: 20962537 [TBL] [Abstract][Full Text] [Related]
4. The rhomboids: a nearly ubiquitous family of intramembrane serine proteases that probably evolved by multiple ancient horizontal gene transfers. Koonin EV; Makarova KS; Rogozin IB; Davidovic L; Letellier MC; Pellegrini L Genome Biol; 2003; 4(3):R19. PubMed ID: 12620104 [TBL] [Abstract][Full Text] [Related]
5. A DNA repair system specific for thermophilic Archaea and bacteria predicted by genomic context analysis. Makarova KS; Aravind L; Grishin NV; Rogozin IB; Koonin EV Nucleic Acids Res; 2002 Jan; 30(2):482-96. PubMed ID: 11788711 [TBL] [Abstract][Full Text] [Related]
6. Archaea-like genes for C1-transfer enzymes in Planctomycetes: phylogenetic implications of their unexpected presence in this phylum. Bauer M; Lombardot T; Teeling H; Ward NL; Amann RI; Glöckner FO J Mol Evol; 2004 Nov; 59(5):571-86. PubMed ID: 15693614 [TBL] [Abstract][Full Text] [Related]
7. Genome-wide survey of prokaryotic serine proteases: analysis of distribution and domain architectures of five serine protease families in prokaryotes. Tripathi LP; Sowdhamini R BMC Genomics; 2008 Nov; 9():549. PubMed ID: 19019219 [TBL] [Abstract][Full Text] [Related]
8. Horizontal gene transfer and archaeal origin of deoxyhypusine synthase homologous genes in bacteria. Brochier C; López-García P; Moreira D Gene; 2004 Apr; 330():169-76. PubMed ID: 15087136 [TBL] [Abstract][Full Text] [Related]
9. Phyletic Distribution and Lineage-Specific Domain Architectures of Archaeal Two-Component Signal Transduction Systems. Galperin MY; Makarova KS; Wolf YI; Koonin EV J Bacteriol; 2018 Apr; 200(7):. PubMed ID: 29263101 [TBL] [Abstract][Full Text] [Related]
10. The UlaG protein family defines novel structural and functional motifs grafted on an ancient RNase fold. Fernandez FJ; Garces F; López-Estepa M; Aguilar J; Baldomà L; Coll M; Badia J; Vega MC BMC Evol Biol; 2011 Sep; 11():273. PubMed ID: 21943130 [TBL] [Abstract][Full Text] [Related]
11. New findings on evolution of metal homeostasis genes: evidence from comparative genome analysis of bacteria and archaea. Coombs JM; Barkay T Appl Environ Microbiol; 2005 Nov; 71(11):7083-91. PubMed ID: 16269744 [TBL] [Abstract][Full Text] [Related]
12. Computational Analysis of the Domain Architecture and Substrate-Gating Mechanism of Prolyl Oligopeptidases from Shewanella woodyi and Identification of Probable Lead Molecules. Patil P; Skariyachan S; Mutt E; Kaushik S Interdiscip Sci; 2016 Sep; 8(3):284-93. PubMed ID: 26298583 [TBL] [Abstract][Full Text] [Related]
13. Evolution of gene fusions: horizontal transfer versus independent events. Yanai I; Wolf YI; Koonin EV Genome Biol; 2002; 3(5):research0024. PubMed ID: 12049665 [TBL] [Abstract][Full Text] [Related]
15. Phylogenetic analyses of two "archaeal" genes in thermotoga maritima reveal multiple transfers between archaea and bacteria. Nesbo CL; L'Haridon S; Stetter KO; Doolittle WF Mol Biol Evol; 2001 Mar; 18(3):362-75. PubMed ID: 11230537 [TBL] [Abstract][Full Text] [Related]
16. Computational analysis of human gut microbial prolyl oligopeptidases (POPs) reveal candidate genes as therapeutics for celiac disease. Nayak S; Regati DR; Sowdhamini R Sci Rep; 2024 Aug; 14(1):19641. PubMed ID: 39179709 [TBL] [Abstract][Full Text] [Related]
17. Widespread distribution of archaeal reverse gyrase in thermophilic bacteria suggests a complex history of vertical inheritance and lateral gene transfers. Brochier-Armanet C; Forterre P Archaea; 2007 May; 2(2):83-93. PubMed ID: 17350929 [TBL] [Abstract][Full Text] [Related]
18. Distribution and evolution of the mobile vma-1b intein. Swithers KS; Soucy SM; Lasek-Nesselquist E; Lapierre P; Gogarten JP Mol Biol Evol; 2013 Dec; 30(12):2676-87. PubMed ID: 24048585 [TBL] [Abstract][Full Text] [Related]
19. Evolution of bacterial RNA polymerase: implications for large-scale bacterial phylogeny, domain accretion, and horizontal gene transfer. Iyer LM; Koonin EV; Aravind L Gene; 2004 Jun; 335():73-88. PubMed ID: 15194191 [TBL] [Abstract][Full Text] [Related]
20. Decoding the structural events in substrate-gating mechanism of eukaryotic prolyl oligopeptidase using normal mode analysis and molecular dynamics simulations. Kaushik S; Etchebest C; Sowdhamini R Proteins; 2014 Jul; 82(7):1428-43. PubMed ID: 24500901 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]