These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

443 related articles for article (PubMed ID: 25407337)

  • 1. Models of β-amyloid induced Tau-pathology: the long and "folded" road to understand the mechanism.
    Stancu IC; Vasconcelos B; Terwel D; Dewachter I
    Mol Neurodegener; 2014 Nov; 9():51. PubMed ID: 25407337
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synergy between amyloid-β and tau in Alzheimer's disease.
    Busche MA; Hyman BT
    Nat Neurosci; 2020 Oct; 23(10):1183-1193. PubMed ID: 32778792
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amyloid cascade hypothesis: Pathogenesis and therapeutic strategies in Alzheimer's disease.
    Barage SH; Sonawane KD
    Neuropeptides; 2015 Aug; 52():1-18. PubMed ID: 26149638
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetically augmenting tau levels does not modulate the onset or progression of Abeta pathology in transgenic mice.
    Oddo S; Caccamo A; Cheng D; Jouleh B; Torp R; LaFerla FM
    J Neurochem; 2007 Aug; 102(4):1053-63. PubMed ID: 17472708
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Untangling amyloid-β, tau, and metals in Alzheimer's disease.
    Savelieff MG; Lee S; Liu Y; Lim MH
    ACS Chem Biol; 2013 May; 8(5):856-65. PubMed ID: 23506614
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding the cause of sporadic Alzheimer's disease.
    Zetterberg H; Mattsson N
    Expert Rev Neurother; 2014 Jun; 14(6):621-30. PubMed ID: 24852227
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The participation of insulin-like growth factor-binding protein 3 released by astrocytes in the pathology of Alzheimer's disease.
    Watanabe K; Uemura K; Asada M; Maesako M; Akiyama H; Shimohama S; Takahashi R; Kinoshita A
    Mol Brain; 2015 Dec; 8(1):82. PubMed ID: 26637371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Yeast Model of Amyloid-β and Tau Aggregation in Alzheimer's Disease.
    Moosavi B; Mousavi B; Macreadie IG
    J Alzheimers Dis; 2015; 47(1):9-16. PubMed ID: 26402750
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A critical analysis of the 'amyloid cascade hypothesis'.
    Armstrong RA
    Folia Neuropathol; 2014; 52(3):211-25. PubMed ID: 25310732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pharmacological modulation of GSAP reduces amyloid-β levels and tau phosphorylation in a mouse model of Alzheimer's disease with plaques and tangles.
    Chu J; Lauretti E; Craige CP; Praticò D
    J Alzheimers Dis; 2014; 41(3):729-37. PubMed ID: 24662099
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Females exhibit more extensive amyloid, but not tau, pathology in an Alzheimer transgenic model.
    Hirata-Fukae C; Li HF; Hoe HS; Gray AJ; Minami SS; Hamada K; Niikura T; Hua F; Tsukagoshi-Nagai H; Horikoshi-Sakuraba Y; Mughal M; Rebeck GW; LaFerla FM; Mattson MP; Iwata N; Saido TC; Klein WL; Duff KE; Aisen PS; Matsuoka Y
    Brain Res; 2008 Jun; 1216():92-103. PubMed ID: 18486110
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amyloid-β and tau: the trigger and bullet in Alzheimer disease pathogenesis.
    Bloom GS
    JAMA Neurol; 2014 Apr; 71(4):505-8. PubMed ID: 24493463
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Filling the gaps in the abeta cascade hypothesis of Alzheimer's disease.
    Golde TE; Dickson D; Hutton M
    Curr Alzheimer Res; 2006 Dec; 3(5):421-30. PubMed ID: 17168641
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mouse models of Alzheimer's disease: the long and filamentous road.
    Phinney AL; Horne P; Yang J; Janus C; Bergeron C; Westaway D
    Neurol Res; 2003 Sep; 25(6):590-600. PubMed ID: 14503012
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Propagation of Aß pathology: hypotheses, discoveries, and yet unresolved questions from experimental and human brain studies.
    Eisele YS; Duyckaerts C
    Acta Neuropathol; 2016 Jan; 131(1):5-25. PubMed ID: 26715565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Testing the Amyloid Hypothesis with a Humanized AD Mouse Model.
    Cahill MK; Huang EJ
    Neuron; 2017 Mar; 93(5):987-989. PubMed ID: 28279360
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In-vivo visualization of key molecular processes involved in Alzheimer's disease pathogenesis: Insights from neuroimaging research in humans and rodent models.
    Higuchi M; Maeda J; Ji B; Maruyama M; Okauchi T; Tokunaga M; Ono M; Suhara T
    Biochim Biophys Acta; 2010 Apr; 1802(4):373-88. PubMed ID: 20060898
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein aggregation in Alzheimer's disease: Aβ and τ and their potential roles in the pathogenesis of AD.
    Thal DR; Fändrich M
    Acta Neuropathol; 2015 Feb; 129(2):163-5. PubMed ID: 25600324
    [No Abstract]   [Full Text] [Related]  

  • 19. Extracellular vesicles in Alzheimer's disease: friends or foes? Focus on aβ-vesicle interaction.
    Joshi P; Benussi L; Furlan R; Ghidoni R; Verderio C
    Int J Mol Sci; 2015 Mar; 16(3):4800-13. PubMed ID: 25741766
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immunotherapy for Alzheimer's disease.
    Wang W; Fan L; Xu D; Wen Z; Yu R; Ma Q
    Acta Biochim Biophys Sin (Shanghai); 2012 Oct; 44(10):807-14. PubMed ID: 22899646
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.