These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 25407395)
1. A simple and convenient approach for preparing core-shell-like silica@nickel species nanoparticles: highly efficient and stable catalyst for the dehydrogenation of 1,2-cyclohexanediol to catechol. Chen BH; Liu W; Li A; Liu YJ; Chao ZS Dalton Trans; 2015 Jan; 44(3):1023-38. PubMed ID: 25407395 [TBL] [Abstract][Full Text] [Related]
2. Simultaneous tuning porosity and basicity of nickel@nickel-magnesium phyllosilicate core-shell catalysts for CO₂ reforming of CH₄. Li Z; Kathiraser Y; Ashok J; Oemar U; Kawi S Langmuir; 2014 Dec; 30(48):14694-705. PubMed ID: 25397692 [TBL] [Abstract][Full Text] [Related]
3. Platinum-centered yolk-shell nanostructure formation by sacrificial nickel spacers. Park JC; Kim JY; Heo E; Park KH; Song H Langmuir; 2010 Nov; 26(21):16469-73. PubMed ID: 20481526 [TBL] [Abstract][Full Text] [Related]
4. Synthesis of triple-layered Ag@Co@Ni core-shell nanoparticles for the catalytic dehydrogenation of ammonia borane. Qiu F; Liu G; Li L; Wang Y; Xu C; An C; Chen C; Xu Y; Huang Y; Wang Y; Jiao L; Yuan H Chemistry; 2014 Jan; 20(2):505-9. PubMed ID: 24302541 [TBL] [Abstract][Full Text] [Related]
5. Porosity control of Pd@SiO2 yolk-shell nanocatalysts by the formation of nickel phyllosilicate and its influence on Suzuki coupling reactions. Kim M; Park JC; Kim A; Park KH; Song H Langmuir; 2012 Apr; 28(15):6441-7. PubMed ID: 22443964 [TBL] [Abstract][Full Text] [Related]
6. Nickel-silicide colloid prepared under mild conditions as a versatile Ni precursor for more efficient CO2 reforming of CH4 catalysts. Baudouin D; Szeto KC; Laurent P; De Mallmann A; Fenet B; Veyre L; Rodemerck U; Copéret C; Thieuleux C J Am Chem Soc; 2012 Dec; 134(51):20624-7. PubMed ID: 23228076 [TBL] [Abstract][Full Text] [Related]
7. Chemical transformation and morphology change of nickel-silica hybrid nanostructures via nickel phyllosilicates. Park JC; Lee HJ; Bang JU; Park KH; Song H Chem Commun (Camb); 2009 Dec; (47):7345-7. PubMed ID: 20024223 [TBL] [Abstract][Full Text] [Related]
8. Formation Combined with Intercalation of Ni and Its Alloy Nanoparticles within Mesoporous Silica for Robust Catalytic Reactions. Li B; Zeng HC ACS Appl Mater Interfaces; 2018 Sep; 10(35):29435-29447. PubMed ID: 30089361 [TBL] [Abstract][Full Text] [Related]
9. Preparation of Silica@Silica Core-Shell Microspheres Using an Aqueous Two-Phase System in a Novel Microchannel Device. Li J; Zhang F; Jiang L; Yu L; Zhang L Langmuir; 2020 Jan; 36(2):576-584. PubMed ID: 31877048 [TBL] [Abstract][Full Text] [Related]
10. Facile synthesis of near-monodisperse Ag@Ni core-shell nanoparticles and their application for catalytic generation of hydrogen. Guo H; Chen Y; Chen X; Wen R; Yue GH; Peng DL Nanotechnology; 2011 May; 22(19):195604. PubMed ID: 21430312 [TBL] [Abstract][Full Text] [Related]
11. Polymer shell as a protective layer for the sandwiched gold nanoparticles and their recyclable catalytic property. Liu B; Wang X; Zhao Y; Wang J; Yang X J Colloid Interface Sci; 2013 Apr; 395():91-8. PubMed ID: 23332796 [TBL] [Abstract][Full Text] [Related]
12. Fabrication of nanogel core-silica shell and hollow silica nanoparticles via an interfacial sol-gel process triggered by transition-metal salt in inverse systems. Cao Z; Yang L; Yan Y; Shang Y; Ye Q; Qi D; Ziener U; Shan G; Landfester K J Colloid Interface Sci; 2013 Sep; 406():139-47. PubMed ID: 23810544 [TBL] [Abstract][Full Text] [Related]
13. Biomimetic synthesis of raspberry-like hybrid polymer-silica core-shell nanoparticles by templating colloidal particles with hairy polyamine shell. Pi M; Yang T; Yuan J; Fujii S; Kakigi Y; Nakamura Y; Cheng S Colloids Surf B Biointerfaces; 2010 Jul; 78(2):193-9. PubMed ID: 20347275 [TBL] [Abstract][Full Text] [Related]
14. Nickel(0) nanoparticles supported on bare or coated cobalt ferrite as highly active, magnetically isolable and reusable catalyst for hydrolytic dehydrogenation of ammonia borane. Manna J; Akbayrak S; Özkar S J Colloid Interface Sci; 2017 Dec; 508():359-368. PubMed ID: 28843925 [TBL] [Abstract][Full Text] [Related]
15. Towards a full understanding of the nature of Ni(II) species and hydroxyl groups over highly siliceous HZSM-5 zeolite supported nickel catalysts prepared by a deposition-precipitation method. Chen BH; Chao ZS; He H; Huang C; Liu YJ; Yi WJ; Wei XL; An JF Dalton Trans; 2016 Feb; 45(6):2720-39. PubMed ID: 26745008 [TBL] [Abstract][Full Text] [Related]
16. Lanthanum-Modified MCF-Derived Nickel Phyllosilicate Catalyst for Enhanced CO Zhang T; Liu Q ACS Appl Mater Interfaces; 2020 Apr; 12(17):19587-19600. PubMed ID: 32281371 [TBL] [Abstract][Full Text] [Related]
17. Synthesis and characterization of a novel Au nanocatalyst with increased thermal stability. Zhang Y; Zhou Y; Zhang Z; Xiang S; Sheng X; Zhou S; Wang F Dalton Trans; 2014 Jan; 43(3):1360-7. PubMed ID: 24202646 [TBL] [Abstract][Full Text] [Related]
19. Bimetallic Au-Ni nanoparticles embedded in SiO2 nanospheres: synergetic catalysis in hydrolytic dehydrogenation of ammonia borane. Jiang HL; Umegaki T; Akita T; Zhang XB; Haruta M; Xu Q Chemistry; 2010 Mar; 16(10):3132-7. PubMed ID: 20127771 [TBL] [Abstract][Full Text] [Related]
20. Highly coke-resistant ni nanoparticle catalysts with minimal sintering in dry reforming of methane. Han JW; Kim C; Park JS; Lee H ChemSusChem; 2014 Feb; 7(2):451-6. PubMed ID: 24402833 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]