These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 25407447)

  • 21. Plasmonic nano-optical trap stiffness measurements and design optimization.
    Jiang Q; Claude JB; Wenger J
    Nanoscale; 2021 Feb; 13(7):4188-4194. PubMed ID: 33576761
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optimized optical trapping of gold nanoparticles.
    Hajizadeh F; Reihani SN
    Opt Express; 2010 Jan; 18(2):551-9. PubMed ID: 20173874
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Template-Stripped Tunable Plasmonic Devices on Stretchable and Rollable Substrates.
    Yoo D; Johnson TW; Cherukulappurath S; Norris DJ; Oh SH
    ACS Nano; 2015 Nov; 9(11):10647-54. PubMed ID: 26402066
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optical trapping of a single protein.
    Pang Y; Gordon R
    Nano Lett; 2012 Jan; 12(1):402-6. PubMed ID: 22171921
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Parallel analysis of individual biological cells using multifocal laser tweezers Raman spectroscopy.
    Liu R; Taylor DS; Matthews DL; Chan JW
    Appl Spectrosc; 2010 Nov; 64(11):1308-10. PubMed ID: 21073802
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparison of silicon photonic crystal resonator designs for optical trapping of nanomaterials.
    Serey X; Mandal S; Erickson D
    Nanotechnology; 2010 Jul; 21(30):305202. PubMed ID: 20603537
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Single and dual fiber nano-tip optical tweezers: trapping and analysis.
    Decombe JB; Huant S; Fick J
    Opt Express; 2013 Dec; 21(25):30521-31. PubMed ID: 24514629
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Atomically flat symmetric elliptical nanohole arrays in a gold film for ultrasensitive refractive index sensing.
    Cervantes Tellez GA; Hassan S; Tait RN; Berini P; Gordon R
    Lab Chip; 2013 Jul; 13(13):2541-6. PubMed ID: 23478567
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Permanent fixing or reversible trapping and release of DNA micropatterns on a gold nanostructure using continuous-wave or femtosecond-pulsed near-infrared laser light.
    Shoji T; Saitoh J; Kitamura N; Nagasawa F; Murakoshi K; Yamauchi H; Ito S; Miyasaka H; Ishihara H; Tsuboi Y
    J Am Chem Soc; 2013 May; 135(17):6643-8. PubMed ID: 23586869
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Subwavelength optical trapping with a fiber-based surface plasmonic lens.
    Liu Y; Stief F; Yu M
    Opt Lett; 2013 Mar; 38(5):721-3. PubMed ID: 23455277
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Self-induced back action actuated nanopore electrophoresis (SANE).
    Raza MU; Peri SSS; Ma LC; Iqbal SM; Alexandrakis G
    Nanotechnology; 2018 Oct; 29(43):435501. PubMed ID: 30073973
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Using molecular tweezers to move and image nanoparticles.
    Zheng H
    Nanoscale; 2013 May; 5(10):4070-8. PubMed ID: 23592008
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Photovoltaic versus optical tweezers.
    Villarroel J; Burgos H; García-Cabañes Á; Carrascosa M; Blázquez-Castro A; Agulló-López F
    Opt Express; 2011 Nov; 19(24):24320-30. PubMed ID: 22109459
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular weight characterization of single globular proteins using optical nanotweezers.
    Wheaton S; Gordon R
    Analyst; 2015 Jul; 140(14):4799-803. PubMed ID: 25739349
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Through nanohole formation in thin metallic film by single nanosecond laser pulses using optical dielectric apertureless probe.
    Kulchin YN; Vitrik OB; Kuchmizhak AA; Nepomnyashchii AV; Savchuk AG; Ionin AA; Kudryashov SI; Makarov SV
    Opt Lett; 2013 May; 38(9):1452-4. PubMed ID: 23632515
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Thermal tweezers for nano-manipulation and trapping of interacting atoms or nanoparticles on crystalline surfaces.
    Mason DR; Gramotnev DK; Gramotnev G
    J Chem Phys; 2012 Sep; 137(11):114701. PubMed ID: 22998275
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Introduction to optical tweezers: background, system designs, and commercial solutions.
    van Mameren J; Wuite GJ; Heller I
    Methods Mol Biol; 2011; 783():1-20. PubMed ID: 21909880
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optimization of metallic nanoapertures at short-wave infrared wavelengths for self-induced back-action trapping.
    Zhang C; Li J; Park JG; Su YF; Goddard RE; Gelfand RM
    Appl Opt; 2019 Dec; 58(35):9498-9504. PubMed ID: 31873547
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhancing surface plasmon detection using template-stripped gold nanoslit arrays on plastic films.
    Lee KL; Chen PW; Wu SH; Huang JB; Yang SY; Wei PK
    ACS Nano; 2012 Apr; 6(4):2931-9. PubMed ID: 22452266
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Manipulation of gold nanorods with dual-optical tweezers for surface plasmon resonance control.
    Ling L; Guo HL; Zhong XL; Huang L; Li JF; Gan L; Li ZY
    Nanotechnology; 2012 Jun; 23(21):215302. PubMed ID: 22551556
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.