These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 2540755)

  • 1. Multiple power-density windows and their possible origin.
    Blackman CF; Kinney LS; House DE; Joines WT
    Bioelectromagnetics; 1989; 10(2):115-28. PubMed ID: 2540755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calcium-ion efflux from brain tissue: power-density versus internal field-intensity dependencies at 50-MHz RF radiation.
    Blackman CF; Benane SG; Joines WT; Hollis MA; House DE
    Bioelectromagnetics; 1980; 1(3):277-83. PubMed ID: 7284026
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of ELF (1-120 Hz) and modulated (50 Hz) RF fields on the efflux of calcium ions from brain tissue in vitro.
    Blackman CF; Benane SG; House DE; Joines WT
    Bioelectromagnetics; 1985; 6(1):1-11. PubMed ID: 3977964
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Induction of calcium-ion efflux from brain tissue by radiofrequency radiation: effect of sample number and modulation frequency on the power-density window.
    Blackman CF; Benane SG; Elder JA; House DE; Lampe JA; Faulk JM
    Bioelectromagnetics; 1980; 1(1):35-43. PubMed ID: 7284014
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of amplitude-modulated 147 MHz radiofrequency radiation on calcium ion efflux from avian brain tissue.
    Albert EN; Slaby F; Roche J; Loftus J
    Radiat Res; 1987 Jan; 109(1):19-27. PubMed ID: 3809389
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of amplitude modulated RF radiation on calcium ion efflux and ODC activity in chronically exposed rat brain.
    Paulraj R; Behari J; Rao AR
    Indian J Biochem Biophys; 1999 Oct; 36(5):337-40. PubMed ID: 10844985
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radiofrequency radiation-induced calcium ion efflux enhancement from human and other neuroblastoma cells in culture.
    Dutta SK; Ghosh B; Blackman CF
    Bioelectromagnetics; 1989; 10(2):197-202. PubMed ID: 2540756
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hyperthermia in radiofrequency-exposed rhesus monkeys: a comparison of frequency and orientation effects.
    Lotz WG
    Radiat Res; 1985 Apr; 102(1):59-70. PubMed ID: 3983370
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dose dependence of acetylcholinesterase activity in neuroblastoma cells exposed to modulated radio-frequency electromagnetic radiation.
    Dutta SK; Das K; Ghosh B; Blackman CF
    Bioelectromagnetics; 1992; 13(4):317-22. PubMed ID: 1510740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Change of cholinesterase relative activity under modulated ultra high frequency electromagnetic radiation in experiments in vitro].
    Pashovkina MS; Pashovkin TN
    Radiats Biol Radioecol; 2011; 51(3):369-73. PubMed ID: 21866837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Power density, field intensity, and carrier frequency determinants of RF-energy-induced calcium-ion efflux from brain tissue.
    Joines WT; Blackman CF
    Bioelectromagnetics; 1980; 1(3):271-5. PubMed ID: 7284025
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA synthesis and cell proliferation in C6 glioma and primary glial cells exposed to a 836.55 MHz modulated radiofrequency field.
    Stagg RB; Thomas WJ; Jones RA; Adey WR
    Bioelectromagnetics; 1997; 18(3):230-6. PubMed ID: 9096841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Radio frequency radiation effects on protein kinase C activity in rats' brain.
    Paulraj R; Behari J
    Mutat Res; 2004 Jan; 545(1-2):127-30. PubMed ID: 14698422
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A role for the magnetic field in the radiation-induced efflux of calcium ions from brain tissue in vitro.
    Blackman CF; Benane SG; Rabinowitz JR; House DE; Joines WT
    Bioelectromagnetics; 1985; 6(4):327-37. PubMed ID: 3836676
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electromagnetic power absorption and temperature changes due to brain machine interface operation.
    Ibrahim TS; Abraham D; Rennaker RL
    Ann Biomed Eng; 2007 May; 35(5):825-34. PubMed ID: 17334681
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro study of microwave effects on calcium efflux in rat brain tissue.
    Shelton WW; Merritt JH
    Bioelectromagnetics; 1981; 2(2):161-7. PubMed ID: 7295363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of continuous-wave and amplitude-modulated 2.45 GHz microwave radiation on the liver and brain aminoacyl-transfer RNA synthetases of in utero exposed mice.
    Kubinyi G; Thuróczy G; Bakos J; Bölöni E; Sinay H; Szabó LD
    Bioelectromagnetics; 1996; 17(6):497-503. PubMed ID: 8986368
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of RF-induced calcium efflux from chick brain tissue at different frequencies: do the scaled power density windows align?
    Athey TW
    Bioelectromagnetics; 1981; 2(4):407-9. PubMed ID: 7326062
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exposure of frog hearts to CW or amplitude-modulated VHF fields: selective efflux of calcium ions at 16 Hz.
    Schwartz JL; House DE; Mealing GA
    Bioelectromagnetics; 1990; 11(4):349-58. PubMed ID: 2285418
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic and vasomotor responses of rhesus monkeys exposed to 225-MHz radiofrequency energy.
    Lotz WG; Saxton JL
    Bioelectromagnetics; 1987; 8(1):73-89. PubMed ID: 3580001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.