BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 25407697)

  • 1. Proteins associated with heat-induced leaf senescence in creeping bentgrass as affected by foliar application of nitrogen, cytokinins, and an ethylene inhibitor.
    Jespersen D; Huang B
    Proteomics; 2015 Feb; 15(4):798-812. PubMed ID: 25407697
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolite responses to exogenous application of nitrogen, cytokinin, and ethylene inhibitors in relation to heat-induced senescence in creeping bentgrass.
    Jespersen D; Yu J; Huang B
    PLoS One; 2015; 10(3):e0123744. PubMed ID: 25822363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential proteomic response to heat stress in thermal Agrostis scabra and heat-sensitive Agrostis stolonifera.
    Xu C; Huang B
    Physiol Plant; 2010 Jun; 139(2):192-204. PubMed ID: 20113435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential proteomic responses to water stress induced by PEG in two creeping bentgrass cultivars differing in stress tolerance.
    Xu C; Huang B
    J Plant Physiol; 2010 Nov; 167(17):1477-85. PubMed ID: 20674080
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chitosan (CTS) Alleviates Heat-Induced Leaf Senescence in Creeping Bentgrass by Regulating Chlorophyll Metabolism, Antioxidant Defense, and the Heat Shock Pathway.
    Huang C; Tian Y; Zhang B; Hassan MJ; Li Z; Zhu Y
    Molecules; 2021 Sep; 26(17):. PubMed ID: 34500767
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein accumulation in leaves and roots associated with improved drought tolerance in creeping bentgrass expressing an ipt gene for cytokinin synthesis.
    Merewitz EB; Gianfagna T; Huang B
    J Exp Bot; 2011 Nov; 62(15):5311-33. PubMed ID: 21831843
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alteration of Transcripts of Stress-Protective Genes and Transcriptional Factors by γ-Aminobutyric Acid (GABA) Associated with Improved Heat and Drought Tolerance in Creeping Bentgrass (
    Li Z; Peng Y; Huang B
    Int J Mol Sci; 2018 May; 19(6):. PubMed ID: 29857479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antioxidative responses in roots and shoots of creeping bentgrass under high temperature: effects of nitrogen and cytokinin.
    Wang K; Zhang X; Ervin E
    J Plant Physiol; 2012 Mar; 169(5):492-500. PubMed ID: 22226339
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chlorophyll loss associated with heat-induced senescence in bentgrass.
    Jespersen D; Zhang J; Huang B
    Plant Sci; 2016 Aug; 249():1-12. PubMed ID: 27297985
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cytokinin or ethylene regulation of heat-induced leaf senescence involving transcriptional modulation of WRKY in perennial ryegrass.
    Chen W; Huang B
    Physiol Plant; 2022 Sep; 174(5):e13766. PubMed ID: 36053893
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermotolerance and antioxidant systems in Agrostis stolonifera: involvement of salicylic acid, abscisic acid, calcium, hydrogen peroxide, and ethylene.
    Larkindale J; Huang B
    J Plant Physiol; 2004 Apr; 161(4):405-13. PubMed ID: 15128028
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Copper stress-induced changes in leaf soluble proteome of Cu-sensitive and tolerant Agrostis capillaris L. populations.
    Hego E; Vilain S; Barré A; Claverol S; Dupuy JW; Lalanne C; Bonneu M; Plomion C; Mench M
    Proteomics; 2016 May; 16(9):1386-97. PubMed ID: 26900021
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiological and metabolic effects of 5-aminolevulinic acid for mitigating salinity stress in creeping bentgrass.
    Yang Z; Chang Z; Sun L; Yu J; Huang B
    PLoS One; 2014; 9(12):e116283. PubMed ID: 25551443
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancing cytokinin synthesis by overexpressing ipt alleviated drought inhibition of root growth through activating ROS-scavenging systems in Agrostis stolonifera.
    Xu Y; Burgess P; Zhang X; Huang B
    J Exp Bot; 2016 Mar; 67(6):1979-92. PubMed ID: 26889010
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic pathways regulated by abscisic acid, salicylic acid and γ-aminobutyric acid in association with improved drought tolerance in creeping bentgrass (Agrostis stolonifera).
    Li Z; Yu J; Peng Y; Huang B
    Physiol Plant; 2017 Jan; 159(1):42-58. PubMed ID: 27507681
    [TBL] [Abstract][Full Text] [Related]  

  • 16. AsHSP17, a creeping bentgrass small heat shock protein modulates plant photosynthesis and ABA-dependent and independent signalling to attenuate plant response to abiotic stress.
    Sun X; Sun C; Li Z; Hu Q; Han L; Luo H
    Plant Cell Environ; 2016 Jun; 39(6):1320-37. PubMed ID: 26610288
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteomic changes associated with expression of a gene (ipt) controlling cytokinin synthesis for improving heat tolerance in a perennial grass species.
    Xu Y; Gianfagna T; Huang B
    J Exp Bot; 2010 Jul; 61(12):3273-89. PubMed ID: 20547565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. iTRAQ-based proteomics reveals key role of γ-aminobutyric acid (GABA) in regulating drought tolerance in perennial creeping bentgrass (Agrostis stolonifera).
    Li Z; Huang T; Tang M; Cheng B; Peng Y; Zhang X
    Plant Physiol Biochem; 2019 Dec; 145():216-226. PubMed ID: 31707249
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heat shock proteins in relation to heat stress tolerance of creeping bentgrass at different N levels.
    Wang K; Zhang X; Goatley M; Ervin E
    PLoS One; 2014; 9(7):e102914. PubMed ID: 25050702
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photosynthesis, water use, and root viability under water stress as affected by expression of SAG12-ipt controlling cytokinin synthesis in Agrostis stolonifera.
    Merewitz EB; Gianfagna T; Huang B
    J Exp Bot; 2011 Jan; 62(1):383-95. PubMed ID: 20841349
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.