These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1022 related articles for article (PubMed ID: 25407785)
1. Length dependence of electron transport through molecular wires--a first principles perspective. Khoo KH; Chen Y; Li S; Quek SY Phys Chem Chem Phys; 2015 Jan; 17(1):77-96. PubMed ID: 25407785 [TBL] [Abstract][Full Text] [Related]
2. Predictive DFT-based approaches to charge and spin transport in single-molecule junctions and two-dimensional materials: successes and challenges. Quek SY; Khoo KH Acc Chem Res; 2014 Nov; 47(11):3250-7. PubMed ID: 24933289 [TBL] [Abstract][Full Text] [Related]
3. Silane and Germane Molecular Electronics. Su TA; Li H; Klausen RS; Kim NT; Neupane M; Leighton JL; Steigerwald ML; Venkataraman L; Nuckolls C Acc Chem Res; 2017 Apr; 50(4):1088-1095. PubMed ID: 28345881 [TBL] [Abstract][Full Text] [Related]
4. Thermopower of amine-gold-linked aromatic molecular junctions from first principles. Quek SY; Choi HJ; Louie SG; Neaton JB ACS Nano; 2011 Jan; 5(1):551-7. PubMed ID: 21171633 [TBL] [Abstract][Full Text] [Related]
5. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007). Hafner J J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862 [TBL] [Abstract][Full Text] [Related]
6. The diversity of electron-transport behaviors of molecular junctions: correlation with the electron-transport pathway. Liu H; Yu C; Gao N; Zhao J Chemphyschem; 2010 Jun; 11(9):1895-902. PubMed ID: 20379983 [TBL] [Abstract][Full Text] [Related]
7. Towards quantitative accuracy in first-principles transport calculations: The GW method applied to alkane/gold junctions. Strange M; Thygesen KS Beilstein J Nanotechnol; 2011; 2():746-54. PubMed ID: 22259757 [TBL] [Abstract][Full Text] [Related]
8. Length-Dependent Nanotransport and Charge Hopping Bottlenecks in Long Thiophene-Containing π-Conjugated Molecular Wires. Smith CE; Odoh SO; Ghosh S; Gagliardi L; Cramer CJ; Frisbie CD J Am Chem Soc; 2015 Dec; 137(50):15732-41. PubMed ID: 26575438 [TBL] [Abstract][Full Text] [Related]
9. Correlations between molecular structure and single-junction conductance: a case study with oligo(phenylene-ethynylene)-type wires. Kaliginedi V; Moreno-García P; Valkenier H; Hong W; García-Suárez VM; Buiter P; Otten JL; Hummelen JC; Lambert CJ; Wandlowski T J Am Chem Soc; 2012 Mar; 134(11):5262-75. PubMed ID: 22352944 [TBL] [Abstract][Full Text] [Related]
10. Charge Transport in 4 nm Molecular Wires with Interrupted Conjugation: Combined Experimental and Computational Evidence for Thermally Assisted Polaron Tunneling. Taherinia D; Smith CE; Ghosh S; Odoh SO; Balhorn L; Gagliardi L; Cramer CJ; Frisbie CD ACS Nano; 2016 Apr; 10(4):4372-83. PubMed ID: 27017971 [TBL] [Abstract][Full Text] [Related]
11. Charge transport in molecular junctions: From tunneling to hopping with the probe technique. Kilgour M; Segal D J Chem Phys; 2015 Jul; 143(2):024111. PubMed ID: 26178094 [TBL] [Abstract][Full Text] [Related]
12. Transition from tunneling to hopping in single molecular junctions by measuring length and temperature dependence. Hines T; Diez-Perez I; Hihath J; Liu H; Wang ZS; Zhao J; Zhou G; Müllen K; Tao N J Am Chem Soc; 2010 Aug; 132(33):11658-64. PubMed ID: 20669945 [TBL] [Abstract][Full Text] [Related]
13. Seebeck Effect in Molecular Wires Facilitating Long-Range Transport. Jang J; Jo JW; Ohto T; Yoon HJ J Am Chem Soc; 2024 Feb; 146(7):4922-4929. PubMed ID: 38324711 [TBL] [Abstract][Full Text] [Related]
14. How donor-bridge-acceptor energetics influence electron tunneling dynamics and their distance dependences. Wenger OS Acc Chem Res; 2011 Jan; 44(1):25-35. PubMed ID: 20945886 [TBL] [Abstract][Full Text] [Related]
15. Energy level alignment and quantum conductance of functionalized metal-molecule junctions: density functional theory versus GW calculations. Jin C; Strange M; Markussen T; Solomon GC; Thygesen KS J Chem Phys; 2013 Nov; 139(18):184307. PubMed ID: 24320274 [TBL] [Abstract][Full Text] [Related]
16. Increased Molecular Conductance in Oligo[ Lee W; Louie S; Evans AM; Orchanian NM; Stone IB; Zhang B; Wei Y; Roy X; Nuckolls C; Venkataraman L Nano Lett; 2022 Jun; 22(12):4919-4924. PubMed ID: 35640062 [TBL] [Abstract][Full Text] [Related]
17. Single-molecule conductance of functionalized oligoynes: length dependence and junction evolution. Moreno-García P; Gulcur M; Manrique DZ; Pope T; Hong W; Kaliginedi V; Huang C; Batsanov AS; Bryce MR; Lambert C; Wandlowski T J Am Chem Soc; 2013 Aug; 135(33):12228-40. PubMed ID: 23875671 [TBL] [Abstract][Full Text] [Related]
18. Length-dependent conductance of molecular wires and contact resistance in metal-molecule-metal junctions. Liu H; Wang N; Zhao J; Guo Y; Yin X; Boey FY; Zhang H Chemphyschem; 2008 Jul; 9(10):1416-24. PubMed ID: 18512822 [TBL] [Abstract][Full Text] [Related]
19. Conduction properties of bipyridinium-functionalized molecular wires. Bagrets A; Arnold A; Evers F J Am Chem Soc; 2008 Jul; 130(28):9013-8. PubMed ID: 18570418 [TBL] [Abstract][Full Text] [Related]
20. Probing charge transport of ruthenium-complex-based molecular wires at the single-molecule level. Liu K; Wang X; Wang F ACS Nano; 2008 Nov; 2(11):2315-23. PubMed ID: 19206398 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]