These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 25408069)

  • 21. A systematic review of approaches to modelling lower limb muscle forces during gait: Applicability to clinical gait analyses.
    Trinler U; Hollands K; Jones R; Baker R
    Gait Posture; 2018 Mar; 61():353-361. PubMed ID: 29433090
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluation of the influence of muscle deactivation on other muscles and joints during gait motion.
    Komura T; Prokopow P; Nagano A
    J Biomech; 2004 Apr; 37(4):425-36. PubMed ID: 14996554
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An open source lower limb model: Hip joint validation.
    Modenese L; Phillips AT; Bull AM
    J Biomech; 2011 Aug; 44(12):2185-93. PubMed ID: 21742331
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of global and joint-to-joint methods for estimating the hip joint load and the muscle forces during walking.
    Fraysse F; Dumas R; Cheze L; Wang X
    J Biomech; 2009 Oct; 42(14):2357-62. PubMed ID: 19699479
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Which data should be tracked in forward-dynamic optimisation to best predict muscle forces in a pathological co-contraction case?
    Bélaise C; Michaud B; Dal Maso F; Mombaur K; Begon M
    J Biomech; 2018 Feb; 68():99-106. PubMed ID: 29325902
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dynamic electromyography. I. Numerical representation using principal component analysis.
    Wootten ME; Kadaba MP; Cochran GV
    J Orthop Res; 1990 Mar; 8(2):247-58. PubMed ID: 2303958
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Predicting muscle forces during the propulsion phase of single leg triple hop test.
    Alvim FC; Lucareli PRG; Menegaldo LL
    Gait Posture; 2018 Jan; 59():298-303. PubMed ID: 28734700
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CEINMS: A toolbox to investigate the influence of different neural control solutions on the prediction of muscle excitation and joint moments during dynamic motor tasks.
    Pizzolato C; Lloyd DG; Sartori M; Ceseracciu E; Besier TF; Fregly BJ; Reggiani M
    J Biomech; 2015 Nov; 48(14):3929-36. PubMed ID: 26522621
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A 3D lower limb musculoskeletal model for simultaneous estimation of musculo-tendon, joint contact, ligament and bone forces during gait.
    Moissenet F; Chèze L; Dumas R
    J Biomech; 2014 Jan; 47(1):50-8. PubMed ID: 24210475
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of different methods for estimating muscle forces in human movement.
    Lin YC; Dorn TW; Schache AG; Pandy MG
    Proc Inst Mech Eng H; 2012 Feb; 226(2):103-12. PubMed ID: 22468462
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of cadence regulation on muscle activation patterns during robot assisted gait: a dynamic simulation study.
    Hussain S; Xie SQ; Jamwal PK
    IEEE J Biomed Health Inform; 2013 Mar; 17(2):442-51. PubMed ID: 23193249
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Muscle activation intervals and EMG envelope in clinical gait analysis.
    Benedetti MG
    IEEE Eng Med Biol Mag; 2001; 20(6):33-4. PubMed ID: 11838253
    [No Abstract]   [Full Text] [Related]  

  • 33. A fast and reliable technique for muscle activity detection from surface EMG signals.
    Merlo A; Farina D; Merletti R
    IEEE Trans Biomed Eng; 2003 Mar; 50(3):316-23. PubMed ID: 12669988
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Static and dynamic optimization solutions for gait are practically equivalent.
    Anderson FC; Pandy MG
    J Biomech; 2001 Feb; 34(2):153-61. PubMed ID: 11165278
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Full-Body Musculoskeletal Model for Muscle-Driven Simulation of Human Gait.
    Rajagopal A; Dembia CL; DeMers MS; Delp DD; Hicks JL; Delp SL
    IEEE Trans Biomed Eng; 2016 Oct; 63(10):2068-79. PubMed ID: 27392337
    [TBL] [Abstract][Full Text] [Related]  

  • 36. EMG assisted optimization: a hybrid approach for estimating muscle forces in an indeterminate biomechanical model.
    Cholewicki J; McGill SM
    J Biomech; 1994 Oct; 27(10):1287-9. PubMed ID: 7962016
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanics of slope walking in the cat: quantification of muscle load, length change, and ankle extensor EMG patterns.
    Gregor RJ; Smith DW; Prilutsky BI
    J Neurophysiol; 2006 Mar; 95(3):1397-409. PubMed ID: 16207777
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Generic scaled versus subject-specific models for the calculation of musculoskeletal loading in cerebral palsy gait: Effect of personalized musculoskeletal geometry outweighs the effect of personalized neural control.
    Kainz H; Wesseling M; Jonkers I
    Clin Biomech (Bristol, Avon); 2021 Jul; 87():105402. PubMed ID: 34098149
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Neuromusculoskeletal Model Calibration Significantly Affects Predicted Knee Contact Forces for Walking.
    Serrancolí G; Kinney AL; Fregly BJ; Font-Llagunes JM
    J Biomech Eng; 2016 Aug; 138(8):0810011-08100111. PubMed ID: 27210105
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A simulation model of the surface EMG signal for analysis of muscle activity during the gait cycle.
    Wang W; De Stefano A; Allen R
    Comput Biol Med; 2006 Jun; 36(6):601-18. PubMed ID: 16029872
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.