BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 25408100)

  • 1. Quantitative analysis of chemotaxis towards toluene by Pseudomonas putida in a convection-free microfluidic device.
    Wang X; Atencia J; Ford RM
    Biotechnol Bioeng; 2015 May; 112(5):896-904. PubMed ID: 25408100
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bacterial chemotaxis toward a NAPL source within a pore-scale microfluidic chamber.
    Wang X; Long T; Ford RM
    Biotechnol Bioeng; 2012 Jul; 109(7):1622-8. PubMed ID: 22252781
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toluene-degrading bacteria are chemotactic towards the environmental pollutants benzene, toluene, and trichloroethylene.
    Parales RE; Ditty JL; Harwood CS
    Appl Environ Microbiol; 2000 Sep; 66(9):4098-104. PubMed ID: 10966434
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics of trichloroethylene and toluene toxicity to Pseudomonas putida F1.
    Singh R; Olson MS
    Environ Toxicol Chem; 2010 Jan; 29(1):56-63. PubMed ID: 20821419
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heterologous Expression of Pseudomonas putida Methyl-Accepting Chemotaxis Proteins Yields Escherichia coli Cells Chemotactic to Aromatic Compounds.
    Roggo C; Clerc EE; Hadadi N; Carraro N; Stocker R; van der Meer JR
    Appl Environ Microbiol; 2018 Sep; 84(18):. PubMed ID: 30006400
    [No Abstract]   [Full Text] [Related]  

  • 6. Chemotaxis increases vertical migration and apparent transverse dispersion of bacteria in a bench-scale microcosm.
    Strobel KL; McGowan S; Bauer RD; Griebler C; Liu J; Ford RM
    Biotechnol Bioeng; 2011 Sep; 108(9):2070-7. PubMed ID: 21495010
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bacterial chemotaxis transverse to axial flow in a microfluidic channel.
    Lanning LM; Ford RM; Long T
    Biotechnol Bioeng; 2008 Jul; 100(4):653-63. PubMed ID: 18306417
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aerobic TCE degradation by encapsulated toluene-oxidizing bacteria, Pseudomonas putida and Bacillus spp.
    Kim S; Bae W; Hwang J; Park J
    Water Sci Technol; 2010; 62(9):1991-7. PubMed ID: 21045323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Responses of Pseudomonas putida to toxic aromatic carbon sources.
    Krell T; Lacal J; Guazzaroni ME; Busch A; Silva-Jiménez H; Fillet S; Reyes-Darías JA; Muñoz-Martínez F; Rico-Jiménez M; García-Fontana C; Duque E; Segura A; Ramos JL
    J Biotechnol; 2012 Jul; 160(1-2):25-32. PubMed ID: 22321573
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemotaxis Increases the Residence Time of Bacteria in Granular Media Containing Distributed Contaminant Sources.
    Adadevoh JS; Triolo S; Ramsburg CA; Ford RM
    Environ Sci Technol; 2016 Jan; 50(1):181-7. PubMed ID: 26605857
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fringe-controlled biodegradation under dynamic conditions: quasi 2-D flow-through experiments and reactive-transport modeling.
    Eckert D; Kürzinger P; Bauer R; Griebler C; Cirpka OA
    J Contam Hydrol; 2015 Jan; 172():100-11. PubMed ID: 25496820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced Retention of Chemotactic Bacteria in a Pore Network with Residual NAPL Contamination.
    Wang X; Lanning LM; Ford RM
    Environ Sci Technol; 2016 Jan; 50(1):165-72. PubMed ID: 26633578
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transverse bacterial migration induced by chemotaxis in a packed column with structured physical heterogeneity.
    Wang M; Ford RM
    Environ Sci Technol; 2009 Aug; 43(15):5921-7. PubMed ID: 19731698
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacterial chemotaxis towards aromatic hydrocarbons in Pseudomonas.
    Lacal J; Muñoz-Martínez F; Reyes-Darías JA; Duque E; Matilla M; Segura A; Calvo JJ; Jímenez-Sánchez C; Krell T; Ramos JL
    Environ Microbiol; 2011 Jul; 13(7):1733-44. PubMed ID: 21605304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic monitoring of Pseudomonas aeruginosa chemotaxis under the continuous chemical gradient.
    Jeong HH; Lee SH; Kim JM; Kim HE; Kim YG; Yoo JY; Chang WS; Lee CS
    Biosens Bioelectron; 2010 Oct; 26(2):351-6. PubMed ID: 20810268
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantification of bacterial chemotaxis in porous media using magnetic resonance imaging.
    Olson MS; Ford RM; Smith JA; Fernandez EJ
    Environ Sci Technol; 2004 Jul; 38(14):3864-70. PubMed ID: 15298194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative analysis of experiments on bacterial chemotaxis to naphthalene.
    Pedit JA; Marx RB; Miller CT; Aitken MD
    Biotechnol Bioeng; 2002 Jun; 78(6):626-34. PubMed ID: 11992528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A three-channel microfluidic device for generating static linear gradients and its application to the quantitative analysis of bacterial chemotaxis.
    Diao J; Young L; Kim S; Fogarty EA; Heilman SM; Zhou P; Shuler ML; Wu M; DeLisa MP
    Lab Chip; 2006 Mar; 6(3):381-8. PubMed ID: 16511621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiplexed microfluidic screening of bacterial chemotaxis.
    Stehnach MR; Henshaw RJ; Floge SA; Guasto JS
    Elife; 2023 Jul; 12():. PubMed ID: 37486823
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Denitrification and chemotaxis of Pseudomonas stutzeri KC in porous media.
    Roush CJ; Lastoskie CM; Worden RM
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2006; 41(6):967-83. PubMed ID: 16760079
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.