These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 25408100)

  • 21. Tandem biodegradation of BTEX components by two Pseudomonas sp.
    Attaway HH; Schmidt MG
    Curr Microbiol; 2002 Jul; 45(1):30-6. PubMed ID: 12029524
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Complete nucleotide sequence of the self-transmissible TOL plasmid pD2RT provides new insight into arrangement of toluene catabolic plasmids.
    Jutkina J; Hansen LH; Li L; Heinaru E; Vedler E; Jõesaar M; Heinaru A
    Plasmid; 2013 Nov; 70(3):393-405. PubMed ID: 24095800
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Activity-dependent fluorescent labeling of bacterial cells expressing the TOL pathway.
    Clingenpeel SR; Keener WK; Keller CR; De Jesus K; Howard MH; Watwood ME
    J Microbiol Methods; 2005 Jan; 60(1):41-6. PubMed ID: 15567223
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Generation of Gradients on a Microfluidic Device: Toward a High-Throughput Investigation of Spermatozoa Chemotaxis.
    Zhang Y; Xiao RR; Yin T; Zou W; Tang Y; Ding J; Yang J
    PLoS One; 2015; 10(11):e0142555. PubMed ID: 26555941
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The microfluidic palette: a diffusive gradient generator with spatio-temporal control.
    Atencia J; Morrow J; Locascio LE
    Lab Chip; 2009 Sep; 9(18):2707-14. PubMed ID: 19704987
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Use of 16S-rRNA to investigate microbial population dynamics during biodegradation of toluene and phenol by a binary culture.
    Rogers JB; DuTeau NM; Reardon KF
    Biotechnol Bioeng; 2000 Nov; 70(4):436-45. PubMed ID: 11005926
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Escherichia coli chemotaxis to competing stimuli in a microfluidic device with a constant gradient.
    Zhao X; Ford RM
    Biotechnol Bioeng; 2022 Sep; 119(9):2564-2573. PubMed ID: 35716141
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chemotaxis Increases the Retention of Bacteria in Porous Media with Residual NAPL Entrapment.
    Adadevoh JST; Ramsburg CA; Ford RM
    Environ Sci Technol; 2018 Jul; 52(13):7289-7295. PubMed ID: 29856626
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The use of bioluminescence stimulant on the immobilized strain, P. putida mt-2 KG1206, with toluene analog inducers and environmental samples.
    Ko K; Kong IC
    Appl Microbiol Biotechnol; 2009 Sep; 84(4):797-802. PubMed ID: 19603161
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bacterial chemotaxis on SlipChip.
    Shen C; Xu P; Huang Z; Cai D; Liu SJ; Du W
    Lab Chip; 2014 Aug; 14(16):3074-80. PubMed ID: 24968180
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bacterial chemotaxis along vapor-phase gradients of naphthalene.
    Hanzel J; Harms H; Wick LY
    Environ Sci Technol; 2010 Dec; 44(24):9304-10. PubMed ID: 21080701
    [TBL] [Abstract][Full Text] [Related]  

  • 32. NBDT (3-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-3-toluene)--a novel fluorescent dye for studying mechanisms of toluene uptake into vital bacteria.
    Sträuber H; Hübschmann T; Jehmlich N; Schmidt F; von Bergen M; Harms H; Müller S
    Cytometry A; 2010 Feb; 77(2):113-20. PubMed ID: 19821519
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inferring the Chemotactic Strategy of P. putida and E. coli Using Modified Kramers-Moyal Coefficients.
    Pohl O; Hintsche M; Alirezaeizanjani Z; Seyrich M; Beta C; Stark H
    PLoS Comput Biol; 2017 Jan; 13(1):e1005329. PubMed ID: 28114420
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Toluene biodegradation by Pseudomonas putida F1: targeting culture stability in long-term operation.
    Díaz LF; Muñoz R; Bordel S; Villaverde S
    Biodegradation; 2008 Apr; 19(2):197-208. PubMed ID: 17487552
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhanced transverse migration of bacteria by chemotaxis in a porous T-sensor.
    Long T; Ford RM
    Environ Sci Technol; 2009 Mar; 43(5):1546-52. PubMed ID: 19350933
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A microfluidic device for studying chemotaxis mechanism of bacterial cancer targeting.
    Song J; Zhang Y; Zhang C; Du X; Guo Z; Kuang Y; Wang Y; Wu P; Zou K; Zou L; Lv J; Wang Q
    Sci Rep; 2018 Apr; 8(1):6394. PubMed ID: 29686328
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transverse chemotactic migration of bacteria from high to low permeability regions in a dual permeability microfluidic device.
    Singh R; Olson MS
    Environ Sci Technol; 2012 Mar; 46(6):3188-95. PubMed ID: 22332941
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A flow cell simulating a subsurface rock fracture for investigations of groundwater-derived biofilms.
    Starek M; Kolev KI; Berthiaume L; Yeung CW; Sleep BE; Wolfaardt GM; Hausner M
    Int Microbiol; 2011 Sep; 14(3):163-71. PubMed ID: 22101414
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pseudomonas putida as the dominant toluene-degrading bacterial species during air decontamination by biofiltration.
    Roy S; Gendron J; Delhoménie MC; Bibeau L; Heitz M; Brzezinski R
    Appl Microbiol Biotechnol; 2003 May; 61(4):366-73. PubMed ID: 12743767
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Residence time calculation for chemotactic bacteria within porous media.
    Duffy KJ; Ford RM; Cummings PT
    Biophys J; 1997 Dec; 73(6):2930-6. PubMed ID: 9414207
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.