These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 25408138)

  • 1. Elucidating the effect of copper as a redox additive and dopant on the performance of a PANI based supercapacitor.
    Pandey K; Yadav P; Mukhopadhyay I
    Phys Chem Chem Phys; 2015 Jan; 17(2):878-87. PubMed ID: 25408138
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of temperature on the capacitance of carbon nanotube supercapacitors.
    Masarapu C; Zeng HF; Hung KH; Wei B
    ACS Nano; 2009 Aug; 3(8):2199-206. PubMed ID: 19583250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redox-Active Gel Electrolyte Combined with Branched Polyaniline Nanofibers Doped with Ferrous Ions for Ultra-High-Performance Flexible Supercapacitors.
    Mo Y; Meng W; Xia Y; Du X
    Polymers (Basel); 2019 Aug; 11(8):. PubMed ID: 31426307
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-performance supercapacitors using graphene/polyaniline composites deposited on kitchen sponge.
    Moussa M; El-Kady MF; Wang H; Michimore A; Zhou Q; Xu J; Majeswki P; Ma J
    Nanotechnology; 2015 Feb; 26(7):075702. PubMed ID: 25619167
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Construction of a binder-free PANI-CQD-Cu electrode
    Shanmugasundaram E; Ganesan V; Narayanan V; Vellaisamy K; Saleh N; Thambusamy S
    Nanoscale Adv; 2024 Mar; 6(6):1765-1780. PubMed ID: 38482030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced electrochemical performance of highly porous supercapacitor electrodes based on solution processed polyaniline thin films.
    Cho S; Shin KH; Jang J
    ACS Appl Mater Interfaces; 2013 Sep; 5(18):9186-93. PubMed ID: 24032539
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microwave-assisted chemical-vapor-induced in situ polymerization of polyaniline nanofibers on graphite electrode for high-performance supercapacitor.
    Li X; Yang L; Lei Y; Gu L; Xiao D
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):19978-89. PubMed ID: 25361469
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unique Core-Shell Nanorod Arrays with Polyaniline Deposited into Mesoporous NiCo2O4 Support for High-Performance Supercapacitor Electrodes.
    Jabeen N; Xia Q; Yang M; Xia H
    ACS Appl Mater Interfaces; 2016 Mar; 8(9):6093-100. PubMed ID: 26889785
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A high-performance electrochemical supercapacitor based on a polyaniline/reduced graphene oxide electrode and a copper(ii) ion active electrolyte.
    Luo Y; Zhang Q; Hong W; Xiao Z; Bai H
    Phys Chem Chem Phys; 2017 Dec; 20(1):131-136. PubMed ID: 29210393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oriented arrays of polyaniline nanorods grown on graphite nanosheets for an electrochemical supercapacitor.
    Li Y; Zhao X; Yu P; Zhang Q
    Langmuir; 2013 Jan; 29(1):493-500. PubMed ID: 23205664
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of anions on the electrochemical properties of polyaniline for supercapacitors.
    Xing J; Liao M; Zhang C; Yin M; Li D; Song Y
    Phys Chem Chem Phys; 2017 May; 19(21):14030-14041. PubMed ID: 28516989
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical Performance of Graphene Oxide/Polyaniline Composite for Supercapacitor Electrode.
    Li J; Xie H; Li Y
    J Nanosci Nanotechnol; 2015 Apr; 15(4):3280-3. PubMed ID: 26353578
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation and the Electrochemical Performance of MnO2/PANI@CNT Composite for Supercapacitors.
    Wang H; Wang X; Peng C; Peng F; Yu H
    J Nanosci Nanotechnol; 2015 Jan; 15(1):709-14. PubMed ID: 26328431
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Aqueous Exfoliation of WO
    Szkoda M; Zarach Z; Trzciński K; Nowak AP
    Materials (Basel); 2020 Dec; 13(24):. PubMed ID: 33348911
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation of supercapacitor electrodes through selection of graphene surface functionalities.
    Lai L; Yang H; Wang L; Teh BK; Zhong J; Chou H; Chen L; Chen W; Shen Z; Ruoff RS; Lin J
    ACS Nano; 2012 Jul; 6(7):5941-51. PubMed ID: 22632101
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-Dimensional Tubular MoS2/PANI Hybrid Electrode for High Rate Performance Supercapacitor.
    Ren L; Zhang G; Yan Z; Kang L; Xu H; Shi F; Lei Z; Liu ZH
    ACS Appl Mater Interfaces; 2015 Dec; 7(51):28294-302. PubMed ID: 26645314
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile and controllable in-situ nitridation of polyaniline electrode for high-performance flexible all-solid-state supercapacitors.
    Wang J; Ma Y; Liu J; Zhu L; Wu X; Huang X
    J Colloid Interface Sci; 2022 Aug; 620():399-406. PubMed ID: 35447573
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Feeling the power: robust supercapacitors from nanostructured conductive polymers fostered with Mn
    Alaş MÖ; Güngör A; Genç R; Erdem E
    Nanoscale; 2019 Jul; 11(27):12804-12816. PubMed ID: 31173030
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of a high performance thin all-solid-state supercapacitor mimicking the active interface of its liquid-state counterpart.
    Anothumakkool B; Torris A T A; Bhange SN; Unni SM; Badiger MV; Kurungot S
    ACS Appl Mater Interfaces; 2013 Dec; 5(24):13397-404. PubMed ID: 24313363
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Facile Synthesis and Electrochemical Characterization of Polyaniline@TiO
    Boutaleb N; Dahou FZ; Djelad H; Sabantina L; Moulefera I; Benyoucef A
    Polymers (Basel); 2022 Oct; 14(21):. PubMed ID: 36365554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.