BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 25408159)

  • 1. Biocompatible mannosylated endosomal-escape nanoparticles enhance selective delivery of short nucleotide sequences to tumor associated macrophages.
    Ortega RA; Barham WJ; Kumar B; Tikhomirov O; McFadden ID; Yull FE; Giorgio TD
    Nanoscale; 2015 Jan; 7(2):500-10. PubMed ID: 25408159
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stimulating TAM-mediated anti-tumor immunity with mannose-decorated nanoparticles in ovarian cancer.
    Glass EB; Hoover AA; Bullock KK; Madden MZ; Reinfeld BI; Harris W; Parker D; Hufnagel DH; Crispens MA; Khabele D; Rathmell WK; Rathmell JC; Wilson AJ; Giorgio TD; Yull FE
    BMC Cancer; 2022 May; 22(1):497. PubMed ID: 35513776
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced endosomal escape of siRNA-incorporating hybrid nanoparticles from calcium phosphate and PEG-block charge-conversional polymer for efficient gene knockdown with negligible cytotoxicity.
    Pittella F; Zhang M; Lee Y; Kim HJ; Tockary T; Osada K; Ishii T; Miyata K; Nishiyama N; Kataoka K
    Biomaterials; 2011 Apr; 32(11):3106-14. PubMed ID: 21272932
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular-Targeted Immunotherapeutic Strategy for Melanoma via Dual-Targeting Nanoparticles Delivering Small Interfering RNA to Tumor-Associated Macrophages.
    Qian Y; Qiao S; Dai Y; Xu G; Dai B; Lu L; Yu X; Luo Q; Zhang Z
    ACS Nano; 2017 Sep; 11(9):9536-9549. PubMed ID: 28858473
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of mannose density on in vitro and in vivo cellular uptake and RNAi efficiency of polymeric nanoparticles.
    Chu S; Tang C; Yin C
    Biomaterials; 2015 Jun; 52():229-39. PubMed ID: 25818429
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combination antitumor immunotherapy with VEGF and PIGF siRNA via systemic delivery of multi-functionalized nanoparticles to tumor-associated macrophages and breast cancer cells.
    Song Y; Tang C; Yin C
    Biomaterials; 2018 Dec; 185():117-132. PubMed ID: 30241030
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mannosylated solid lipid nanoparticles as vectors for site-specific delivery of an anti-cancer drug.
    Jain A; Agarwal A; Majumder S; Lariya N; Khaya A; Agrawal H; Majumdar S; Agrawal GP
    J Control Release; 2010 Dec; 148(3):359-67. PubMed ID: 20854859
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and evaluation of endosomolytic biocompatible peptides as carriers for siRNA delivery.
    Xu W; Pan R; Zhao D; Chu D; Wu Y; Wang R; Chen B; Ding Y; Sadatmousavi P; Yuan Y; Chen P
    Mol Pharm; 2015 Jan; 12(1):56-65. PubMed ID: 25378277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient siRNA delivery and tumor accumulation mediated by ionically cross-linked folic acid-poly(ethylene glycol)-chitosan oligosaccharide lactate nanoparticles: for the potential targeted ovarian cancer gene therapy.
    Li TS; Yawata T; Honke K
    Eur J Pharm Sci; 2014 Feb; 52():48-61. PubMed ID: 24178005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polymer nanocarrier system for endosome escape and timed release of siRNA with complete gene silencing and cell death in cancer cells.
    Gu W; Jia Z; Truong NP; Prasadam I; Xiao Y; Monteiro MJ
    Biomacromolecules; 2013 Oct; 14(10):3386-9. PubMed ID: 23992391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Manipulating the NF-κB pathway in macrophages using mannosylated, siRNA-delivering nanoparticles can induce immunostimulatory and tumor cytotoxic functions.
    Ortega RA; Barham W; Sharman K; Tikhomirov O; Giorgio TD; Yull FE
    Int J Nanomedicine; 2016; 11():2163-77. PubMed ID: 27274241
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tumor-targeting multifunctional nanoparticles for siRNA delivery: recent advances in cancer therapy.
    Ku SH; Kim K; Choi K; Kim SH; Kwon IC
    Adv Healthc Mater; 2014 Aug; 3(8):1182-93. PubMed ID: 24577795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective targeting of tumor cells and tumor associated macrophages separately by twin-like core-shell nanoparticles for enhanced tumor-localized chemoimmunotherapy.
    Wang T; Zhang J; Hou T; Yin X; Zhang N
    Nanoscale; 2019 Aug; 11(29):13934-13946. PubMed ID: 31305839
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cationic fluorescent polymer core-shell nanoparticles for encapsulation, delivery, and non-invasively tracking the intracellular release of siRNA.
    Yu JC; Zhu S; Feng PJ; Qian CG; Huang J; Sun MJ; Shen QD
    Chem Commun (Camb); 2015 Feb; 51(14):2976-9. PubMed ID: 25597349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrated multiplatform method for in vitro quantitative assessment of cellular uptake for fluorescent polymer nanoparticles.
    Ferrari R; Lupi M; Falcetta F; Bigini P; Paolella K; Fiordaliso F; Bisighini C; Salmona M; D'Incalci M; Morbidelli M; Moscatelli D; Ubezio P
    Nanotechnology; 2014 Jan; 25(4):045102. PubMed ID: 24398665
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonviral pulmonary delivery of siRNA.
    Merkel OM; Kissel T
    Acc Chem Res; 2012 Jul; 45(7):961-70. PubMed ID: 21905687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cationic bovine serum albumin based self-assembled nanoparticles as siRNA delivery vector for treating lung metastatic cancer.
    Han J; Wang Q; Zhang Z; Gong T; Sun X
    Small; 2014 Feb; 10(3):524-35. PubMed ID: 24106138
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The potential and advances in RNAi therapy: chemical and structural modifications of siRNA molecules and use of biocompatible nanocarriers.
    Joo MK; Yhee JY; Kim SH; Kim K
    J Control Release; 2014 Nov; 193():113-21. PubMed ID: 24862319
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-assembled biodegradable micellar nanoparticles of amphiphilic and cationic block copolymer for siRNA delivery.
    Sun TM; Du JZ; Yan LF; Mao HQ; Wang J
    Biomaterials; 2008 Nov; 29(32):4348-55. PubMed ID: 18715636
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Drug-free mannosylated liposomes inhibit tumor growth by promoting the polarization of tumor-associated macrophages.
    Ye J; Yang Y; Dong W; Gao Y; Meng Y; Wang H; Li L; Jin J; Ji M; Xia X; Chen X; Jin Y; Liu Y
    Int J Nanomedicine; 2019; 14():3203-3220. PubMed ID: 31118632
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 13.