These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 25408192)

  • 21. Characterization of surface-immobilized layers of intact liposomes.
    Vermette P; Griesser HJ; Kambouris P; Meagher L
    Biomacromolecules; 2004; 5(4):1496-502. PubMed ID: 15244470
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Generation of complex, static solution gradients in microfluidic channels.
    Wu H; Huang B; Zare RN
    J Am Chem Soc; 2006 Apr; 128(13):4194-5. PubMed ID: 16568971
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microfluidic chips designed for measuring biomolecules through a microbead-based quantum dot fluorescence assay.
    Yun KS; Lee D; Kim HS; Yoon E
    Methods Mol Biol; 2009; 544():53-67. PubMed ID: 19488693
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Simultaneous measurements of the flow velocities in a microchannel by wide/evanescent field illuminations with particle/single molecules.
    Gai H; Li Y; Silber-Li Z; Ma Y; Lin B
    Lab Chip; 2005 Apr; 5(4):443-9. PubMed ID: 15791343
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Aptamer-based microfluidic beads array sensor for simultaneous detection of multiple analytes employing multienzyme-linked nanoparticle amplification and quantum dots labels.
    Zhang H; Hu X; Fu X
    Biosens Bioelectron; 2014 Jul; 57():22-9. PubMed ID: 24534576
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Multienzyme-nanoparticles amplification for sensitive virus genotyping in microfluidic microbeads array using Au nanoparticle probes and quantum dots as labels.
    Zhang H; Liu L; Li CW; Fu H; Chen Y; Yang M
    Biosens Bioelectron; 2011 Nov; 29(1):89-96. PubMed ID: 21872460
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fast immobilization of probe beads by dielectrophoresis-controlled adhesion in a versatile microfluidic platform for affinity assay.
    Auerswald J; Widmer D; de Rooij NF; Sigrist A; Staubli T; Stöckli T; Knapp HF
    Electrophoresis; 2005 Oct; 26(19):3697-705. PubMed ID: 16136524
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Continuous cytometric bead processing within a microfluidic device for bead based sensing platforms.
    Yang S; Undar A; Zahn JD
    Lab Chip; 2007 May; 7(5):588-95. PubMed ID: 17476377
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Protein-protein interaction analysis in single microfluidic droplets using FRET and fluorescence lifetime detection.
    Benz C; Retzbach H; Nagl S; Belder D
    Lab Chip; 2013 Jul; 13(14):2808-14. PubMed ID: 23674080
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electric field directed assembly of high-density microbead arrays.
    Barbee KD; Hsiao AP; Heller MJ; Huang X
    Lab Chip; 2009 Nov; 9(22):3268-74. PubMed ID: 19865735
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A method of binding kinetics of a ligand to micropatterned proteins on a microfluidic chip.
    Lee CS; Lee SH; Kim YG; Lee JH; Kim YK; Kim BG
    Biosens Bioelectron; 2007 Jan; 22(6):891-8. PubMed ID: 16679009
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Monitoring of real-time streptavidin-biotin binding kinetics using droplet microfluidics.
    Srisa-Art M; Dyson EC; deMello AJ; Edel JB
    Anal Chem; 2008 Sep; 80(18):7063-7. PubMed ID: 18712935
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An analysis of transport resistances in the operation of BIAcore; implications for kinetic studies of biospecific interactions.
    Yarmush ML; Patankar DB; Yarmush DM
    Mol Immunol; 1996 Oct; 33(15):1203-14. PubMed ID: 9070669
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bead-based immunoassays using a micro-chip flow cytometer.
    Holmes D; She JK; Roach PL; Morgan H
    Lab Chip; 2007 Aug; 7(8):1048-56. PubMed ID: 17653348
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development of a microscopic platform for real-time monitoring of biomolecular interactions.
    Sasuga Y; Tani T; Hayashi M; Yamakawa H; Ohara O; Harada Y
    Genome Res; 2006 Jan; 16(1):132-9. PubMed ID: 16344567
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Randomly distributed arrays of optically coded functional microbeads for toxicity screening and monitoring.
    Ahn JM; Kim JH; Kim JH; Gu MB
    Lab Chip; 2010 Oct; 10(20):2695-701. PubMed ID: 20664847
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A facile in situ microfluidic method for creating multivalent surfaces: toward functional glycomics.
    Simone G; Neuzil P; Perozziello G; Francardi M; Malara N; Di Fabrizio E; Manz A
    Lab Chip; 2012 Apr; 12(8):1500-7. PubMed ID: 22402593
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Neutravidin coated surfaces for single DNA molecule analysis.
    Kim Y; Jo K
    Chem Commun (Camb); 2011 Jun; 47(22):6248-50. PubMed ID: 21359309
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microfluidic biofunctionalisation protocols to form multi-valent interactions for cell rolling and phenotype modification investigations.
    Perozziello G; Simone G; Malara N; La Rocca R; Tallerico R; Catalano R; Pardeo F; Candeloro P; Cuda G; Carbone E; Di Fabrizio E
    Electrophoresis; 2013 Jul; 34(13):1845-51. PubMed ID: 23616364
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fabrication of quantum dots-encoded microbeads with a simple capillary fluidic device and their application for biomolecule detection.
    Zhang P; He Y; Ruan Z; Chen FF; Yang J
    J Colloid Interface Sci; 2012 Nov; 385(1):8-14. PubMed ID: 22863065
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.