These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 25408205)

  • 1. The first report of luminescent liver tissue in fishes: evolution and structure of bioluminescent organs in the deep-sea naked barracudinas (Aulopiformes: Lestidiidae).
    Ghedotti MJ; Barton RW; Simons AM; Davis MP
    J Morphol; 2015 Mar; 276(3):310-8. PubMed ID: 25408205
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Morphology and evolution of bioluminescent organs in the glowbellies (Percomorpha: Acropomatidae) with comments on the taxonomy and phylogeny of Acropomatiformes.
    Ghedotti MJ; Gruber JN; Barton RW; Davis MP; Smith WL
    J Morphol; 2018 Nov; 279(11):1640-1653. PubMed ID: 30368890
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The barracudina genera Lestidium and Lestrolepis of Taiwan, with descriptions of two new species (Aulopiformes: Paralepididae).
    Ho HC; Tsai SY; Li HH
    Zootaxa; 2019 Dec; 4702(1):zootaxa.4702.1.16. PubMed ID: 32229910
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anatomy and evolution of bioluminescent organs in the slimeheads (Teleostei: Trachichthyidae).
    Ghedotti MJ; DeKay HM; Maile AJ; Smith WL; Davis MP
    J Morphol; 2021 Jun; 282(6):820-832. PubMed ID: 33733466
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new species of Lestrolepis from the Red Sea, with redescription of Lestrolepis pofi (Harry, 1953) (Aulopiformes: Parelepididae).
    Ho HC; Golani D
    Zootaxa; 2019 Jun; 4619(3):zootaxa.4619.3.10. PubMed ID: 31716296
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Repeated and Widespread Evolution of Bioluminescence in Marine Fishes.
    Davis MP; Sparks JS; Smith WL
    PLoS One; 2016; 11(6):e0155154. PubMed ID: 27276229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Light organ symbioses in fishes.
    Haygood MG
    Crit Rev Microbiol; 1993; 19(4):191-216. PubMed ID: 8305135
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative innervation of cephalic photophores of the loosejaw dragonfishes (Teleostei: Stomiiformes: Stomiidae): evidence for parallel evolution of long-wave bioluminescence.
    Kenaley CP
    J Morphol; 2010 Apr; 271(4):418-37. PubMed ID: 19924766
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new phylogenetic test for comparing multiple high-dimensional evolutionary rates suggests interplay of evolutionary rates and modularity in lanternfishes (Myctophiformes; Myctophidae).
    Denton JS; Adams DC
    Evolution; 2015 Sep; 69(9):2425-40. PubMed ID: 26278586
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioluminescent symbionts of flashlight fishes and deep-sea anglerfishes form unique lineages related to the genus Vibrio.
    Haygood MG; Distel DL
    Nature; 1993 May; 363(6425):154-6. PubMed ID: 7683390
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intergenic exchange, geographic isolation, and the evolution of bioluminescent color for Pyrophorus click beetles.
    Feder JL; Velez S
    Evolution; 2009 May; 63(5):1203-16. PubMed ID: 19154393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Light in the darkness: New perspective on lanternfish relationships and classification using genomic and morphological data.
    Martin RP; Olson EE; Girard MG; Smith WL; Davis MP
    Mol Phylogenet Evol; 2018 Apr; 121():71-85. PubMed ID: 29305244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New observations and ontogenetic transformation of photogenic tissues in the tubeshoulder Sagamichthys schnakenbecki (Platytroctidae, Alepocephaliformes).
    Poulsen JY
    J Fish Biol; 2019 Jan; 94(1):62-76. PubMed ID: 30387157
    [TBL] [Abstract][Full Text] [Related]  

  • 14. LuxA gene of light organ symbionts of the bioluminescent fish Acropoma japonicum (Acropomatidae) and Siphamia versicolor (Apogonidae) forms a lineage closely related to that of Photobacterium leiognathi ssp. mandapamensis.
    Wada M; Kamiya A; Uchiyama N; Yoshizawa S; Kita-Tsukamoto K; Ikejima K; Yu R; Imada C; Karatani H; Mizuno N; Suzuki Y; Nishida M; Kogure K
    FEMS Microbiol Lett; 2006 Jul; 260(2):186-92. PubMed ID: 16842343
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptations for reflection of bioluminescent light in the gas bladder of Leiognathus equulus (Perciformes: Leiognathidae).
    McFall-Ngai MJ
    J Exp Zool; 1983 Jul; 227(1):23-33. PubMed ID: 6619765
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimating divergence times of lizardfishes and their allies (Euteleostei: Aulopiformes) and the timing of deep-sea adaptations.
    Davis MP; Fielitz C
    Mol Phylogenet Evol; 2010 Dec; 57(3):1194-208. PubMed ID: 20854916
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Luminescence control of Stomiidae photophores.
    Mallefet J; Duchatelet L; Hermans C; Baguet F
    Acta Histochem; 2019 Jan; 121(1):7-15. PubMed ID: 30322809
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Light emission miracle in the sea and preeminent applications of bioluminescence in recent new biotechnology.
    Sharifian S; Homaei A; Hemmati R; Khajeh K
    J Photochem Photobiol B; 2017 Jul; 172():115-128. PubMed ID: 28549320
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence that a single bioluminescent system is shared by all known bioluminescent fungal lineages.
    Oliveira AG; Desjardin DE; Perry BA; Stevani CV
    Photochem Photobiol Sci; 2012 May; 11(5):848-52. PubMed ID: 22495263
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How to survive in the dark: bioluminescence in the deep sea.
    Herring PJ
    Symp Soc Exp Biol; 1985; 39():323-50. PubMed ID: 3914720
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.