BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 25408205)

  • 1. The first report of luminescent liver tissue in fishes: evolution and structure of bioluminescent organs in the deep-sea naked barracudinas (Aulopiformes: Lestidiidae).
    Ghedotti MJ; Barton RW; Simons AM; Davis MP
    J Morphol; 2015 Mar; 276(3):310-8. PubMed ID: 25408205
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Morphology and evolution of bioluminescent organs in the glowbellies (Percomorpha: Acropomatidae) with comments on the taxonomy and phylogeny of Acropomatiformes.
    Ghedotti MJ; Gruber JN; Barton RW; Davis MP; Smith WL
    J Morphol; 2018 Nov; 279(11):1640-1653. PubMed ID: 30368890
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The barracudina genera Lestidium and Lestrolepis of Taiwan, with descriptions of two new species (Aulopiformes: Paralepididae).
    Ho HC; Tsai SY; Li HH
    Zootaxa; 2019 Dec; 4702(1):zootaxa.4702.1.16. PubMed ID: 32229910
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anatomy and evolution of bioluminescent organs in the slimeheads (Teleostei: Trachichthyidae).
    Ghedotti MJ; DeKay HM; Maile AJ; Smith WL; Davis MP
    J Morphol; 2021 Jun; 282(6):820-832. PubMed ID: 33733466
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new species of Lestrolepis from the Red Sea, with redescription of Lestrolepis pofi (Harry, 1953) (Aulopiformes: Parelepididae).
    Ho HC; Golani D
    Zootaxa; 2019 Jun; 4619(3):zootaxa.4619.3.10. PubMed ID: 31716296
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Repeated and Widespread Evolution of Bioluminescence in Marine Fishes.
    Davis MP; Sparks JS; Smith WL
    PLoS One; 2016; 11(6):e0155154. PubMed ID: 27276229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Light organ symbioses in fishes.
    Haygood MG
    Crit Rev Microbiol; 1993; 19(4):191-216. PubMed ID: 8305135
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative innervation of cephalic photophores of the loosejaw dragonfishes (Teleostei: Stomiiformes: Stomiidae): evidence for parallel evolution of long-wave bioluminescence.
    Kenaley CP
    J Morphol; 2010 Apr; 271(4):418-37. PubMed ID: 19924766
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new phylogenetic test for comparing multiple high-dimensional evolutionary rates suggests interplay of evolutionary rates and modularity in lanternfishes (Myctophiformes; Myctophidae).
    Denton JS; Adams DC
    Evolution; 2015 Sep; 69(9):2425-40. PubMed ID: 26278586
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioluminescent symbionts of flashlight fishes and deep-sea anglerfishes form unique lineages related to the genus Vibrio.
    Haygood MG; Distel DL
    Nature; 1993 May; 363(6425):154-6. PubMed ID: 7683390
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intergenic exchange, geographic isolation, and the evolution of bioluminescent color for Pyrophorus click beetles.
    Feder JL; Velez S
    Evolution; 2009 May; 63(5):1203-16. PubMed ID: 19154393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Light in the darkness: New perspective on lanternfish relationships and classification using genomic and morphological data.
    Martin RP; Olson EE; Girard MG; Smith WL; Davis MP
    Mol Phylogenet Evol; 2018 Apr; 121():71-85. PubMed ID: 29305244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New observations and ontogenetic transformation of photogenic tissues in the tubeshoulder Sagamichthys schnakenbecki (Platytroctidae, Alepocephaliformes).
    Poulsen JY
    J Fish Biol; 2019 Jan; 94(1):62-76. PubMed ID: 30387157
    [TBL] [Abstract][Full Text] [Related]  

  • 14. LuxA gene of light organ symbionts of the bioluminescent fish Acropoma japonicum (Acropomatidae) and Siphamia versicolor (Apogonidae) forms a lineage closely related to that of Photobacterium leiognathi ssp. mandapamensis.
    Wada M; Kamiya A; Uchiyama N; Yoshizawa S; Kita-Tsukamoto K; Ikejima K; Yu R; Imada C; Karatani H; Mizuno N; Suzuki Y; Nishida M; Kogure K
    FEMS Microbiol Lett; 2006 Jul; 260(2):186-92. PubMed ID: 16842343
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptations for reflection of bioluminescent light in the gas bladder of Leiognathus equulus (Perciformes: Leiognathidae).
    McFall-Ngai MJ
    J Exp Zool; 1983 Jul; 227(1):23-33. PubMed ID: 6619765
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimating divergence times of lizardfishes and their allies (Euteleostei: Aulopiformes) and the timing of deep-sea adaptations.
    Davis MP; Fielitz C
    Mol Phylogenet Evol; 2010 Dec; 57(3):1194-208. PubMed ID: 20854916
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Luminescence control of Stomiidae photophores.
    Mallefet J; Duchatelet L; Hermans C; Baguet F
    Acta Histochem; 2019 Jan; 121(1):7-15. PubMed ID: 30322809
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Light emission miracle in the sea and preeminent applications of bioluminescence in recent new biotechnology.
    Sharifian S; Homaei A; Hemmati R; Khajeh K
    J Photochem Photobiol B; 2017 Jul; 172():115-128. PubMed ID: 28549320
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence that a single bioluminescent system is shared by all known bioluminescent fungal lineages.
    Oliveira AG; Desjardin DE; Perry BA; Stevani CV
    Photochem Photobiol Sci; 2012 May; 11(5):848-52. PubMed ID: 22495263
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How to survive in the dark: bioluminescence in the deep sea.
    Herring PJ
    Symp Soc Exp Biol; 1985; 39():323-50. PubMed ID: 3914720
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.