These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 25408237)

  • 1. Supported lipid bilayers as dynamic platforms for tethered particles.
    Hartman KL; Kim S; Kim K; Nam JM
    Nanoscale; 2015 Jan; 7(1):66-76. PubMed ID: 25408237
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dark-field-based observation of single-nanoparticle dynamics on a supported lipid bilayer for in situ analysis of interacting molecules and nanoparticles.
    Lee YK; Kim S; Nam JM
    Chemphyschem; 2015 Jan; 16(1):77-84. PubMed ID: 25345401
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmonic Nanoparticle-Interfaced Lipid Bilayer Membranes.
    Kim S; Seo J; Park HH; Kim N; Oh JW; Nam JM
    Acc Chem Res; 2019 Oct; 52(10):2793-2805. PubMed ID: 31553568
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Softening of phospholipid membranes by the adhesion of silica nanoparticles--as seen by neutron spin-echo (NSE).
    Hoffmann I; Michel R; Sharp M; Holderer O; Appavou MS; Polzer F; Farago B; Gradzielski M
    Nanoscale; 2014 Jun; 6(12):6945-52. PubMed ID: 24838980
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diffusive dynamics of vesicles tethered to a fluid supported bilayer by single-particle tracking.
    Yoshina-Ishii C; Chan YH; Johnson JM; Kung LA; Lenz P; Boxer SG
    Langmuir; 2006 Jun; 22(13):5682-9. PubMed ID: 16768494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Massively parallel and highly quantitative single-particle analysis on interactions between nanoparticles on supported lipid bilayer.
    Lee YK; Kim S; Oh JW; Nam JM
    J Am Chem Soc; 2014 Mar; 136(10):4081-8. PubMed ID: 24521296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computer simulation study of nanoparticle interaction with a lipid membrane under mechanical stress.
    Lai K; Wang B; Zhang Y; Zheng Y
    Phys Chem Chem Phys; 2013 Jan; 15(1):270-8. PubMed ID: 23165312
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Membrane curvature based lipid sorting using a nanoparticle patterned substrate.
    Black JC; Cheney PP; Campbell T; Knowles MK
    Soft Matter; 2014 Mar; 10(12):2016-23. PubMed ID: 24652483
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrophysiological characterization of membrane disruption by nanoparticles.
    de Planque MR; Aghdaei S; Roose T; Morgan H
    ACS Nano; 2011 May; 5(5):3599-606. PubMed ID: 21517083
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoparticle-lipid bilayer interactions studied with lipid bilayer arrays.
    Lu B; Smith T; Schmidt JJ
    Nanoscale; 2015 May; 7(17):7858-66. PubMed ID: 25853986
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of natural organic matter (NOM) coatings on nanoparticle adsorption onto supported lipid bilayers.
    Bo Z; Avsar SY; Corliss MK; Chung M; Cho NJ
    J Hazard Mater; 2017 Oct; 339():264-273. PubMed ID: 28654791
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coverage and disruption of phospholipid membranes by oxide nanoparticles.
    Pera H; Nolte TM; Leermakers FA; Kleijn JM
    Langmuir; 2014 Dec; 30(48):14581-90. PubMed ID: 25390582
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Templated assembly of biomembranes on silica microspheres using bacteriorhodopsin conjugates as structural anchors.
    Sharma MK; Gilchrist ML
    Langmuir; 2007 Jun; 23(13):7101-12. PubMed ID: 17511484
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrical method to quantify nanoparticle interaction with lipid bilayers.
    Carney RP; Astier Y; Carney TM; Voïtchovsky K; Jacob Silva PH; Stellacci F
    ACS Nano; 2013 Feb; 7(2):932-42. PubMed ID: 23267695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advances in the use of nanoscale bilayers to study membrane protein structure and function.
    Malhotra K; Alder NN
    Biotechnol Genet Eng Rev; 2014 Oct; 30(1-2):79-93. PubMed ID: 25023464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoparticle-induced permeability of lipid membranes.
    Pogodin S; Werner M; Sommer JU; Baulin VA
    ACS Nano; 2012 Dec; 6(12):10555-61. PubMed ID: 23128273
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lipid bilayer-integrated optoelectronic tweezers for nanoparticle manipulations.
    Ota S; Wang S; Wang Y; Yin X; Zhang X
    Nano Lett; 2013 Jun; 13(6):2766-70. PubMed ID: 23659726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of silver nanoparticles with tethered bilayer lipid membranes.
    Goreham RV; Thompson VC; Samura Y; Gibson CT; Shapter JG; Köper I
    Langmuir; 2015 Jun; 31(21):5868-74. PubMed ID: 25950498
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular motions in lipid bilayers studied by the neutron backscattering technique.
    Rheinstädter MC; Seydel T; Demmel F; Salditt T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jun; 71(6 Pt 1):061908. PubMed ID: 16089766
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlling two-dimensional tethered vesicle motion using an electric field: interplay of electrophoresis and electro-osmosis.
    Yoshina-Ishii C; Boxer SG
    Langmuir; 2006 Feb; 22(5):2384-91. PubMed ID: 16489833
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.