BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 25408237)

  • 1. Supported lipid bilayers as dynamic platforms for tethered particles.
    Hartman KL; Kim S; Kim K; Nam JM
    Nanoscale; 2015 Jan; 7(1):66-76. PubMed ID: 25408237
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dark-field-based observation of single-nanoparticle dynamics on a supported lipid bilayer for in situ analysis of interacting molecules and nanoparticles.
    Lee YK; Kim S; Nam JM
    Chemphyschem; 2015 Jan; 16(1):77-84. PubMed ID: 25345401
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmonic Nanoparticle-Interfaced Lipid Bilayer Membranes.
    Kim S; Seo J; Park HH; Kim N; Oh JW; Nam JM
    Acc Chem Res; 2019 Oct; 52(10):2793-2805. PubMed ID: 31553568
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Softening of phospholipid membranes by the adhesion of silica nanoparticles--as seen by neutron spin-echo (NSE).
    Hoffmann I; Michel R; Sharp M; Holderer O; Appavou MS; Polzer F; Farago B; Gradzielski M
    Nanoscale; 2014 Jun; 6(12):6945-52. PubMed ID: 24838980
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diffusive dynamics of vesicles tethered to a fluid supported bilayer by single-particle tracking.
    Yoshina-Ishii C; Chan YH; Johnson JM; Kung LA; Lenz P; Boxer SG
    Langmuir; 2006 Jun; 22(13):5682-9. PubMed ID: 16768494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Massively parallel and highly quantitative single-particle analysis on interactions between nanoparticles on supported lipid bilayer.
    Lee YK; Kim S; Oh JW; Nam JM
    J Am Chem Soc; 2014 Mar; 136(10):4081-8. PubMed ID: 24521296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computer simulation study of nanoparticle interaction with a lipid membrane under mechanical stress.
    Lai K; Wang B; Zhang Y; Zheng Y
    Phys Chem Chem Phys; 2013 Jan; 15(1):270-8. PubMed ID: 23165312
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Membrane curvature based lipid sorting using a nanoparticle patterned substrate.
    Black JC; Cheney PP; Campbell T; Knowles MK
    Soft Matter; 2014 Mar; 10(12):2016-23. PubMed ID: 24652483
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrophysiological characterization of membrane disruption by nanoparticles.
    de Planque MR; Aghdaei S; Roose T; Morgan H
    ACS Nano; 2011 May; 5(5):3599-606. PubMed ID: 21517083
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoparticle-lipid bilayer interactions studied with lipid bilayer arrays.
    Lu B; Smith T; Schmidt JJ
    Nanoscale; 2015 May; 7(17):7858-66. PubMed ID: 25853986
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of natural organic matter (NOM) coatings on nanoparticle adsorption onto supported lipid bilayers.
    Bo Z; Avsar SY; Corliss MK; Chung M; Cho NJ
    J Hazard Mater; 2017 Oct; 339():264-273. PubMed ID: 28654791
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coverage and disruption of phospholipid membranes by oxide nanoparticles.
    Pera H; Nolte TM; Leermakers FA; Kleijn JM
    Langmuir; 2014 Dec; 30(48):14581-90. PubMed ID: 25390582
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Templated assembly of biomembranes on silica microspheres using bacteriorhodopsin conjugates as structural anchors.
    Sharma MK; Gilchrist ML
    Langmuir; 2007 Jun; 23(13):7101-12. PubMed ID: 17511484
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrical method to quantify nanoparticle interaction with lipid bilayers.
    Carney RP; Astier Y; Carney TM; Voïtchovsky K; Jacob Silva PH; Stellacci F
    ACS Nano; 2013 Feb; 7(2):932-42. PubMed ID: 23267695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advances in the use of nanoscale bilayers to study membrane protein structure and function.
    Malhotra K; Alder NN
    Biotechnol Genet Eng Rev; 2014 Oct; 30(1-2):79-93. PubMed ID: 25023464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoparticle-induced permeability of lipid membranes.
    Pogodin S; Werner M; Sommer JU; Baulin VA
    ACS Nano; 2012 Dec; 6(12):10555-61. PubMed ID: 23128273
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lipid bilayer-integrated optoelectronic tweezers for nanoparticle manipulations.
    Ota S; Wang S; Wang Y; Yin X; Zhang X
    Nano Lett; 2013 Jun; 13(6):2766-70. PubMed ID: 23659726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of silver nanoparticles with tethered bilayer lipid membranes.
    Goreham RV; Thompson VC; Samura Y; Gibson CT; Shapter JG; Köper I
    Langmuir; 2015 Jun; 31(21):5868-74. PubMed ID: 25950498
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular motions in lipid bilayers studied by the neutron backscattering technique.
    Rheinstädter MC; Seydel T; Demmel F; Salditt T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jun; 71(6 Pt 1):061908. PubMed ID: 16089766
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlling two-dimensional tethered vesicle motion using an electric field: interplay of electrophoresis and electro-osmosis.
    Yoshina-Ishii C; Boxer SG
    Langmuir; 2006 Feb; 22(5):2384-91. PubMed ID: 16489833
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.