BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 25408237)

  • 21. Controlling two-dimensional tethered vesicle motion using an electric field: interplay of electrophoresis and electro-osmosis.
    Yoshina-Ishii C; Boxer SG
    Langmuir; 2006 Feb; 22(5):2384-91. PubMed ID: 16489833
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Membrane-mediated interactions between nanoparticles on a substrate.
    Liang Q; Chen QH; Ma YQ
    J Phys Chem B; 2010 Apr; 114(16):5359-64. PubMed ID: 20369863
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The protein-tethered lipid bilayer: a novel mimic of the biological membrane.
    Giess F; Friedrich MG; Heberle J; Naumann RL; Knoll W
    Biophys J; 2004 Nov; 87(5):3213-20. PubMed ID: 15339795
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In situ formation and characterization of poly(ethylene glycol)-supported lipid bilayers on gold surfaces.
    Munro JC; Frank CW
    Langmuir; 2004 Nov; 20(24):10567-75. PubMed ID: 15544386
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Surface nanostructures for fluorescence probing of supported lipid bilayers on reflective substrates.
    Dabkowska AP; Piret G; Niman CS; Lard M; Linke H; Nylander T; Prinz CN
    Nanoscale; 2015 Nov; 7(43):18020-4. PubMed ID: 26482860
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Lithographically defined macroscale modulation of lateral fluidity and phase separation realized via patterned nanoporous silica-supported phospholipid bilayers.
    Kendall EL; Ngassam VN; Gilmore SF; Brinker CJ; Parikh AN
    J Am Chem Soc; 2013 Oct; 135(42):15718-21. PubMed ID: 24111800
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A versatile approach to the generation of fluid supported lipid bilayers and its applications.
    Mashaghi S; van Oijen AM
    Biotechnol Bioeng; 2014 Oct; 111(10):2076-81. PubMed ID: 24771312
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structure and phase transformations of DPPC lipid bilayers in the presence of nanoparticles: insights from coarse-grained molecular dynamics simulations.
    Prates Ramalho JP; Gkeka P; Sarkisov L
    Langmuir; 2011 Apr; 27(7):3723-30. PubMed ID: 21391652
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nanoparticle adhesion to the cell membrane and its effect on nanoparticle uptake efficiency.
    Lesniak A; Salvati A; Santos-Martinez MJ; Radomski MW; Dawson KA; Åberg C
    J Am Chem Soc; 2013 Jan; 135(4):1438-44. PubMed ID: 23301582
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electrical manipulation of glycan-phosphatidyl inositol-tethered proteins in planar supported bilayers.
    Groves JT; Wülfing C; Boxer SG
    Biophys J; 1996 Nov; 71(5):2716-23. PubMed ID: 8913608
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Formation of lipid sheaths around nanoparticle-supported lipid bilayers.
    Ahmed S; Savarala S; Chen Y; Bothun G; Wunder SL
    Small; 2012 Jun; 8(11):1740-51. PubMed ID: 22434657
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rupture of Lipid Membranes Induced by Amphiphilic Janus Nanoparticles.
    Lee K; Zhang L; Yi Y; Wang X; Yu Y
    ACS Nano; 2018 Apr; 12(4):3646-3657. PubMed ID: 29617553
    [TBL] [Abstract][Full Text] [Related]  

  • 33. One step synthesis of gold-loaded radial mesoporous silica nanospheres and supported lipid bilayer functionalization: towards bio-multifunctional sensors.
    Veneziano R; Derrien G; Tan S; Brisson A; Devoisselle JM; Chopineau J; Charnay C
    Small; 2012 Dec; 8(23):3674-82. PubMed ID: 22969002
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Semihydrophobic nanoparticle-induced disruption of supported lipid bilayers: specific ion effect.
    Jing B; Abot RC; Zhu Y
    J Phys Chem B; 2014 Nov; 118(46):13175-82. PubMed ID: 25337793
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Formation of solid-supported lipid bilayers: an integrated view.
    Richter RP; Bérat R; Brisson AR
    Langmuir; 2006 Apr; 22(8):3497-505. PubMed ID: 16584220
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lipid bilayer reorganization under extreme pH conditions.
    Goertz MP; Goyal N; Montano GA; Bunker BC
    Langmuir; 2011 May; 27(9):5481-91. PubMed ID: 21462990
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Control over micro-fluidity of liposomal membranes by hybridizing metal nanoparticles.
    Park SH; Oh SG; Suh KD; Han SH; Chung DJ; Mun JY; Han SS; Kim JW
    Colloids Surf B Biointerfaces; 2009 Apr; 70(1):108-13. PubMed ID: 19162452
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of nanoparticle-membrane electrostatic interactions on membrane fluidity and bending elasticity.
    Santhosh PB; Velikonja A; Perutkova Š; Gongadze E; Kulkarni M; Genova J; Eleršič K; Iglič A; Kralj-Iglič V; Ulrih NP
    Chem Phys Lipids; 2014 Feb; 178():52-62. PubMed ID: 24309194
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interaction between dipolar lipid headgroups and charged nanoparticles mediated by water dipoles and ions.
    Velikonja A; Santhosh PB; Gongadze E; Kulkarni M; Eleršič K; Perutkova Š; Kralj-Iglič V; Ulrih NP; Iglič A
    Int J Mol Sci; 2013 Jul; 14(8):15312-29. PubMed ID: 23887653
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Polymerized lipid bilayers on a solid substrate: morphologies and obstruction of lateral diffusion.
    Okazaki T; Inaba T; Tatsu Y; Tero R; Urisu T; Morigaki K
    Langmuir; 2009 Jan; 25(1):345-51. PubMed ID: 19067577
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.