These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

458 related articles for article (PubMed ID: 25408241)

  • 1. Transcriptome sequencing of two wild barley (Hordeum spontaneum L.) ecotypes differentially adapted to drought stress reveals ecotype-specific transcripts.
    Bedada G; Westerbergh A; Müller T; Galkin E; Bdolach E; Moshelion M; Fridman E; Schmid KJ
    BMC Genomics; 2014 Nov; 15(1):995. PubMed ID: 25408241
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RNA-Seq analysis identifies genes associated with differential reproductive success under drought-stress in accessions of wild barley Hordeum spontaneum.
    Hübner S; Korol AB; Schmid KJ
    BMC Plant Biol; 2015 Jun; 15():134. PubMed ID: 26055625
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The response of Hordeum spontaneum desert ecotype to drought and excessive light intensity is characterized by induction of O2 dependent photochemical activity and anthocyanin accumulation.
    Eppel A; Keren N; Salomon E; Volis S; Rachmilevitch S
    Plant Sci; 2013 Mar; 201-202():74-80. PubMed ID: 23352404
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Global insights into high temperature and drought stress regulated genes by RNA-Seq in economically important oilseed crop Brassica juncea.
    Bhardwaj AR; Joshi G; Kukreja B; Malik V; Arora P; Pandey R; Shukla RN; Bankar KG; Katiyar-Agarwal S; Goel S; Jagannath A; Kumar A; Agarwal M
    BMC Plant Biol; 2015 Jan; 15():9. PubMed ID: 25604693
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RNA-Seq analysis of the wild barley (H. spontaneum) leaf transcriptome under salt stress.
    Bahieldin A; Atef A; Sabir JS; Gadalla NO; Edris S; Alzohairy AM; Radhwan NA; Baeshen MN; Ramadan AM; Eissa HF; Hassan SM; Baeshen NA; Abuzinadah O; Al-Kordy MA; El-Domyati FM; Jansen RK
    C R Biol; 2015 May; 338(5):285-97. PubMed ID: 25882349
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A catalogue of putative unique transcripts from Douglas-fir (Pseudotsuga menziesii) based on 454 transcriptome sequencing of genetically diverse, drought stressed seedlings.
    Müller T; Ensminger I; Schmid KJ
    BMC Genomics; 2012 Nov; 13():673. PubMed ID: 23190494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coding and long non-coding RNAs provide evidence of distinct transcriptional reprogramming for two ecotypes of the extremophile plant Eutrema salsugineum undergoing water deficit stress.
    Simopoulos CMA; MacLeod MJR; Irani S; Sung WWL; Champigny MJ; Summers PS; Golding GB; Weretilnyk EA
    BMC Genomics; 2020 Jun; 21(1):396. PubMed ID: 32513102
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comprehensive transcriptomic study on horse gram (Macrotyloma uniflorum): De novo assembly, functional characterization and comparative analysis in relation to drought stress.
    Bhardwaj J; Chauhan R; Swarnkar MK; Chahota RK; Singh AK; Shankar R; Yadav SK
    BMC Genomics; 2013 Sep; 14():647. PubMed ID: 24059455
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression of drought tolerance genes in tropical upland rice cultivars (Oryza sativa).
    Silveira RD; Abreu FR; Mamidi S; McClean PE; Vianello RP; Lanna AC; Carneiro NP; Brondani C
    Genet Mol Res; 2015 Jul; 14(3):8181-200. PubMed ID: 26345744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genomic adaptation to drought in wild barley is driven by edaphic natural selection at the Tabigha Evolution Slope.
    Wang X; Chen ZH; Yang C; Zhang X; Jin G; Chen G; Wang Y; Holford P; Nevo E; Zhang G; Dai F
    Proc Natl Acad Sci U S A; 2018 May; 115(20):5223-5228. PubMed ID: 29712833
    [TBL] [Abstract][Full Text] [Related]  

  • 11. De novo Transcriptome Assembly of Common Wild Rice (Oryza rufipogon Griff.) and Discovery of Drought-Response Genes in Root Tissue Based on Transcriptomic Data.
    Tian XJ; Long Y; Wang J; Zhang JW; Wang YY; Li WM; Peng YF; Yuan QH; Pei XW
    PLoS One; 2015; 10(7):e0131455. PubMed ID: 26134138
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glutathione S-transferase (GST) family in barley: identification of members, enzyme activity, and gene expression pattern.
    Rezaei MK; Shobbar ZS; Shahbazi M; Abedini R; Zare S
    J Plant Physiol; 2013 Sep; 170(14):1277-84. PubMed ID: 23664583
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative proteomic analysis of drought tolerance in the two contrasting Tibetan wild genotypes and cultivated genotype.
    Wang N; Zhao J; He X; Sun H; Zhang G; Wu F
    BMC Genomics; 2015 Jun; 16(1):432. PubMed ID: 26044796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of genomic regions involved in tolerance to drought stress and drought stress induced leaf senescence in juvenile barley.
    Wehner GG; Balko CC; Enders MM; Humbeck KK; Ordon FF
    BMC Plant Biol; 2015 May; 15():125. PubMed ID: 25998066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Drought and salt tolerances in wild relatives for wheat and barley improvement.
    Nevo E; Chen G
    Plant Cell Environ; 2010 Apr; 33(4):670-85. PubMed ID: 20040064
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptome analysis revealed the drought-responsive genes in Tibetan hulless barley.
    Zeng X; Bai L; Wei Z; Yuan H; Wang Y; Xu Q; Tang Y; Nyima T
    BMC Genomics; 2016 May; 17():386. PubMed ID: 27207260
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene co-expression analysis reveals transcriptome divergence between wild and cultivated chickpea under drought stress.
    Moenga SM; Gai Y; Carrasquilla-Garcia N; Perilla-Henao LM; Cook DR
    Plant J; 2020 Dec; 104(5):1195-1214. PubMed ID: 32920943
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distinct morpho-physiological and biochemical features of arid and hyper-arid ecotypes of Ziziphus nummularia under drought suggest its higher tolerance compared with semi-arid ecotype.
    Sivalingam PN; Mahajan MM; Satheesh V; Chauhan S; Changal H; Gurjar K; Singh D; Bhan C; Sivalingam A; Marathe A; Ram C; Dokka N; More TA; Padaria JC; Bhat KV; Mohapatra T
    Tree Physiol; 2021 Nov; 41(11):2063-2081. PubMed ID: 33929534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Haplotyping, linkage mapping and expression analysis of barley genes regulated by terminal drought stress influencing seed quality.
    Worch S; Rajesh K; Harshavardhan VT; Pietsch C; Korzun V; Kuntze L; Börner A; Wobus U; Röder MS; Sreenivasulu N
    BMC Plant Biol; 2011 Jan; 11():1. PubMed ID: 21205309
    [TBL] [Abstract][Full Text] [Related]  

  • 20. De novo transcriptome sequencing and comprehensive analysis of the drought-responsive genes in the desert plant Cynanchum komarovii.
    Ma X; Wang P; Zhou S; Sun Y; Liu N; Li X; Hou Y
    BMC Genomics; 2015 Oct; 16():753. PubMed ID: 26444539
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.