These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
10. Genomic adaptation to drought in wild barley is driven by edaphic natural selection at the Tabigha Evolution Slope. Wang X; Chen ZH; Yang C; Zhang X; Jin G; Chen G; Wang Y; Holford P; Nevo E; Zhang G; Dai F Proc Natl Acad Sci U S A; 2018 May; 115(20):5223-5228. PubMed ID: 29712833 [TBL] [Abstract][Full Text] [Related]
11. De novo Transcriptome Assembly of Common Wild Rice (Oryza rufipogon Griff.) and Discovery of Drought-Response Genes in Root Tissue Based on Transcriptomic Data. Tian XJ; Long Y; Wang J; Zhang JW; Wang YY; Li WM; Peng YF; Yuan QH; Pei XW PLoS One; 2015; 10(7):e0131455. PubMed ID: 26134138 [TBL] [Abstract][Full Text] [Related]
12. Glutathione S-transferase (GST) family in barley: identification of members, enzyme activity, and gene expression pattern. Rezaei MK; Shobbar ZS; Shahbazi M; Abedini R; Zare S J Plant Physiol; 2013 Sep; 170(14):1277-84. PubMed ID: 23664583 [TBL] [Abstract][Full Text] [Related]
13. Comparative proteomic analysis of drought tolerance in the two contrasting Tibetan wild genotypes and cultivated genotype. Wang N; Zhao J; He X; Sun H; Zhang G; Wu F BMC Genomics; 2015 Jun; 16(1):432. PubMed ID: 26044796 [TBL] [Abstract][Full Text] [Related]
14. Identification of genomic regions involved in tolerance to drought stress and drought stress induced leaf senescence in juvenile barley. Wehner GG; Balko CC; Enders MM; Humbeck KK; Ordon FF BMC Plant Biol; 2015 May; 15():125. PubMed ID: 25998066 [TBL] [Abstract][Full Text] [Related]
15. Drought and salt tolerances in wild relatives for wheat and barley improvement. Nevo E; Chen G Plant Cell Environ; 2010 Apr; 33(4):670-85. PubMed ID: 20040064 [TBL] [Abstract][Full Text] [Related]
16. Transcriptome analysis revealed the drought-responsive genes in Tibetan hulless barley. Zeng X; Bai L; Wei Z; Yuan H; Wang Y; Xu Q; Tang Y; Nyima T BMC Genomics; 2016 May; 17():386. PubMed ID: 27207260 [TBL] [Abstract][Full Text] [Related]
17. Gene co-expression analysis reveals transcriptome divergence between wild and cultivated chickpea under drought stress. Moenga SM; Gai Y; Carrasquilla-Garcia N; Perilla-Henao LM; Cook DR Plant J; 2020 Dec; 104(5):1195-1214. PubMed ID: 32920943 [TBL] [Abstract][Full Text] [Related]
18. Distinct morpho-physiological and biochemical features of arid and hyper-arid ecotypes of Ziziphus nummularia under drought suggest its higher tolerance compared with semi-arid ecotype. Sivalingam PN; Mahajan MM; Satheesh V; Chauhan S; Changal H; Gurjar K; Singh D; Bhan C; Sivalingam A; Marathe A; Ram C; Dokka N; More TA; Padaria JC; Bhat KV; Mohapatra T Tree Physiol; 2021 Nov; 41(11):2063-2081. PubMed ID: 33929534 [TBL] [Abstract][Full Text] [Related]
20. De novo transcriptome sequencing and comprehensive analysis of the drought-responsive genes in the desert plant Cynanchum komarovii. Ma X; Wang P; Zhou S; Sun Y; Liu N; Li X; Hou Y BMC Genomics; 2015 Oct; 16():753. PubMed ID: 26444539 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]