These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
458 related articles for article (PubMed ID: 25408241)
21. Genome resequencing and transcriptome profiling reveal molecular evidence of tolerance to water deficit in barley. Qiu CW; Ma Y; Liu W; Zhang S; Wang Y; Cai S; Zhang G; Chater CCC; Chen ZH; Wu F J Adv Res; 2023 Jul; 49():31-45. PubMed ID: 36170948 [TBL] [Abstract][Full Text] [Related]
22. Prominent alterations of wild barley leaf transcriptome in response to individual and combined drought acclimation and heat shock conditions. Ashoub A; Müller N; Jiménez-Gómez JM; Brüggemann W Physiol Plant; 2018 May; 163(1):18-29. PubMed ID: 29111595 [TBL] [Abstract][Full Text] [Related]
23. Drought stress and re-watering affect the abundance of TIP aquaporin transcripts in barley. Kurowska MM; Wiecha K; Gajek K; Szarejko I PLoS One; 2019; 14(12):e0226423. PubMed ID: 31846477 [TBL] [Abstract][Full Text] [Related]
24. HvEXPB7, a novel β-expansin gene revealed by the root hair transcriptome of Tibetan wild barley, improves root hair growth under drought stress. He X; Zeng J; Cao F; Ahmed IM; Zhang G; Vincze E; Wu F J Exp Bot; 2015 Dec; 66(22):7405-19. PubMed ID: 26417018 [TBL] [Abstract][Full Text] [Related]
25. Exploring drought stress-regulated genes in senna (Cassia angustifolia Vahl.): a transcriptomic approach. Mehta RH; Ponnuchamy M; Kumar J; Reddy NR Funct Integr Genomics; 2017 Jan; 17(1):1-25. PubMed ID: 27709374 [TBL] [Abstract][Full Text] [Related]
26. Genome-Wide Identification and Characterization of Drought Stress Responsive microRNAs in Tibetan Wild Barley. Qiu CW; Liu L; Feng X; Hao PF; He X; Cao F; Wu F Int J Mol Sci; 2020 Apr; 21(8):. PubMed ID: 32316632 [TBL] [Abstract][Full Text] [Related]
27. Evaluation of drought resistance and transcriptome analysis for the identification of drought-responsive genes in Iris germanica. Zhang J; Huang D; Zhao X; Zhang M Sci Rep; 2021 Aug; 11(1):16308. PubMed ID: 34381085 [TBL] [Abstract][Full Text] [Related]
28. Medium term water deficit elicits distinct transcriptome responses in Eucalyptus species of contrasting environmental origin. Spokevicius AV; Tibbits J; Rigault P; Nolin MA; Müller C; Merchant A BMC Genomics; 2017 Apr; 18(1):284. PubMed ID: 28388878 [TBL] [Abstract][Full Text] [Related]
29. Metabolite profiling of barley flag leaves under drought and combined heat and drought stress reveals metabolic QTLs for metabolites associated with antioxidant defense. Templer SE; Ammon A; Pscheidt D; Ciobotea O; Schuy C; McCollum C; Sonnewald U; Hanemann A; Förster J; Ordon F; von Korff M; Voll LM J Exp Bot; 2017 Mar; 68(7):1697-1713. PubMed ID: 28338908 [TBL] [Abstract][Full Text] [Related]
30. Adaptation Strategies of Halophytic Barley Isayenkov S; Hilo A; Rizzo P; Tandron Moya YA; Rolletschek H; Borisjuk L; Radchuk V Int J Mol Sci; 2020 Nov; 21(23):. PubMed ID: 33260985 [TBL] [Abstract][Full Text] [Related]
31. De novo assembly of red clover transcriptome based on RNA-Seq data provides insight into drought response, gene discovery and marker identification. Yates SA; Swain MT; Hegarty MJ; Chernukin I; Lowe M; Allison GG; Ruttink T; Abberton MT; Jenkins G; Skøt L BMC Genomics; 2014 Jun; 15(1):453. PubMed ID: 24912738 [TBL] [Abstract][Full Text] [Related]
32. Identification of a novel gene (Hsdr4) involved in water-stress tolerance in wild barley. Suprunova T; Krugman T; Distelfeld A; Fahima T; Nevo E; Korol A Plant Mol Biol; 2007 May; 64(1-2):17-34. PubMed ID: 17238046 [TBL] [Abstract][Full Text] [Related]
33. Genetic and Physiological Dissection of Photosynthesis in Barley Exposed to Drought Stress. Daszkowska-Golec A; Collin A; Sitko K; Janiak A; Kalaji HM; Szarejko I Int J Mol Sci; 2019 Dec; 20(24):. PubMed ID: 31888211 [TBL] [Abstract][Full Text] [Related]
34. Comparative transcriptomic and physiological analyses of contrasting hybrid cultivars ND476 and ZX978 identify important differentially expressed genes and pathways regulating drought stress tolerance in maize. Liu G; Zenda T; Liu S; Wang X; Jin H; Dong A; Yang Y; Duan H Genes Genomics; 2020 Aug; 42(8):937-955. PubMed ID: 32623576 [TBL] [Abstract][Full Text] [Related]
35. Natural Variation Uncovers Candidate Genes for Barley Spikelet Number and Grain Yield under Drought Stress. Thabet SG; Moursi YS; Karam MA; Börner A; Alqudah AM Genes (Basel); 2020 May; 11(5):. PubMed ID: 32403266 [TBL] [Abstract][Full Text] [Related]
36. Risk-management strategies and transpiration rates of wild barley in uncertain environments. Galkin E; Dalal A; Evenko A; Fridman E; Kan I; Wallach R; Moshelion M Physiol Plant; 2018 Dec; 164(4):412-428. PubMed ID: 30084486 [TBL] [Abstract][Full Text] [Related]
37. Transcriptome assembly and analysis of Tibetan Hulless Barley (Hordeum vulgare L. var. nudum) developing grains, with emphasis on quality properties. Chen X; Long H; Gao P; Deng G; Pan Z; Liang J; Tang Y; Tashi N; Yu M PLoS One; 2014; 9(5):e98144. PubMed ID: 24871534 [TBL] [Abstract][Full Text] [Related]
38. Transcriptome Profiling of Thayale Purayil F; Rajashekar B; S Kurup S; Cheruth AJ; Subramaniam S; Hassan Tawfik N; M A Amiri K Genes (Basel); 2020 Jun; 11(6):. PubMed ID: 32531994 [No Abstract] [Full Text] [Related]
39. Genome architecture and diverged selection shaping pattern of genomic differentiation in wild barley. Zhang W; Tan C; Hu H; Pan R; Xiao Y; Ouyang K; Zhou G; Jia Y; Zhang XQ; Hill CB; Wang P; Chapman B; Han Y; Xu L; Xu Y; Angessa T; Luo H; Westcott S; Sharma D; Nevo E; Barrero RA; Bellgard MI; He T; Tian X; Li C Plant Biotechnol J; 2023 Jan; 21(1):46-62. PubMed ID: 36054248 [TBL] [Abstract][Full Text] [Related]
40. Multi-Omics Analysis Reveals the Mechanism Underlying the Edaphic Adaptation in Wild Barley at Evolution Slope (Tabigha). Cai S; Shen Q; Huang Y; Han Z; Wu D; Chen ZH; Nevo E; Zhang G Adv Sci (Weinh); 2021 Oct; 8(20):e2101374. PubMed ID: 34390227 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]