BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 25408403)

  • 1. Engineering of customized meganucleases via in vitro compartmentalization and in cellulo optimization.
    Takeuchi R; Choi M; Stoddard BL
    Methods Mol Biol; 2015; 1239():105-32. PubMed ID: 25408403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redesign of extensive protein-DNA interfaces of meganucleases using iterative cycles of in vitro compartmentalization.
    Takeuchi R; Choi M; Stoddard BL
    Proc Natl Acad Sci U S A; 2014 Mar; 111(11):4061-6. PubMed ID: 24591643
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computer design of obligate heterodimer meganucleases allows efficient cutting of custom DNA sequences.
    Fajardo-Sanchez E; Stricher F; Pâques F; Isalan M; Serrano L
    Nucleic Acids Res; 2008 Apr; 36(7):2163-73. PubMed ID: 18276641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A combinatorial approach to create artificial homing endonucleases cleaving chosen sequences.
    Smith J; Grizot S; Arnould S; Duclert A; Epinat JC; Chames P; Prieto J; Redondo P; Blanco FJ; Bravo J; Montoya G; Pâques F; Duchateau P
    Nucleic Acids Res; 2006; 34(22):e149. PubMed ID: 17130168
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A two-plasmid bacterial selection system for characterization and engineering of homing endonucleases.
    Sun N; Zhao H
    Methods Mol Biol; 2014; 1123():87-96. PubMed ID: 24510262
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Meganucleases and DNA double-strand break-induced recombination: perspectives for gene therapy.
    Pâques F; Duchateau P
    Curr Gene Ther; 2007 Feb; 7(1):49-66. PubMed ID: 17305528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Active site residue identity regulates cleavage preference of LAGLIDADG homing endonucleases.
    McMurrough TA; Brown CM; Zhang K; Hausner G; Junop MS; Gloor GB; Edgell DR
    Nucleic Acids Res; 2018 Dec; 46(22):11990-12007. PubMed ID: 30357419
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineered I-CreI derivatives cleaving sequences from the human XPC gene can induce highly efficient gene correction in mammalian cells.
    Arnould S; Perez C; Cabaniols JP; Smith J; Gouble A; Grizot S; Epinat JC; Duclert A; Duchateau P; Pâques F
    J Mol Biol; 2007 Aug; 371(1):49-65. PubMed ID: 17561112
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo selection of engineered homing endonucleases using double-strand break induced homologous recombination.
    Chames P; Epinat JC; Guillier S; Patin A; Lacroix E; Pâques F
    Nucleic Acids Res; 2005 Nov; 33(20):e178. PubMed ID: 16306233
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Homing endonucleases: from microbial genetic invaders to reagents for targeted DNA modification.
    Stoddard BL
    Structure; 2011 Jan; 19(1):7-15. PubMed ID: 21220111
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [A protocol for TALEN construction and gene targeting in zebrafish].
    Shen Y; Huang P; Zhang B
    Yi Chuan; 2013 Apr; 35(4):533-44. PubMed ID: 23659945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular basis of xeroderma pigmentosum group C DNA recognition by engineered meganucleases.
    Redondo P; Prieto J; Muñoz IG; Alibés A; Stricher F; Serrano L; Cabaniols JP; Daboussi F; Arnould S; Perez C; Duchateau P; Pâques F; Blanco FJ; Montoya G
    Nature; 2008 Nov; 456(7218):107-11. PubMed ID: 18987743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering of large numbers of highly specific homing endonucleases that induce recombination on novel DNA targets.
    Arnould S; Chames P; Perez C; Lacroix E; Duclert A; Epinat JC; Stricher F; Petit AS; Patin A; Guillier S; Rolland S; Prieto J; Blanco FJ; Bravo J; Montoya G; Serrano L; Duchateau P; Pâques F
    J Mol Biol; 2006 Jan; 355(3):443-58. PubMed ID: 16310802
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design, activity, and structure of a highly specific artificial endonuclease.
    Chevalier BS; Kortemme T; Chadsey MS; Baker D; Monnat RJ; Stoddard BL
    Mol Cell; 2002 Oct; 10(4):895-905. PubMed ID: 12419232
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assembly and characterization of megaTALs for hyperspecific genome engineering applications.
    Boissel S; Scharenberg AM
    Methods Mol Biol; 2015; 1239():171-96. PubMed ID: 25408406
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generation of redesigned homing endonucleases comprising DNA-binding domains derived from two different scaffolds.
    Grizot S; Epinat JC; Thomas S; Duclert A; Rolland S; Pâques F; Duchateau P
    Nucleic Acids Res; 2010 Apr; 38(6):2006-18. PubMed ID: 20026587
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [TALE nuclease engineering and targeted genome modification].
    Shen Y; Xiao A; Huang P; Wang WY; Zhu ZY; Zhang B
    Yi Chuan; 2013 Apr; 35(4):395-409. PubMed ID: 23659930
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The I-CreI meganuclease and its engineered derivatives: applications from cell modification to gene therapy.
    Arnould S; Delenda C; Grizot S; Desseaux C; Pâques F; Silva GH; Smith J
    Protein Eng Des Sel; 2011 Jan; 24(1-2):27-31. PubMed ID: 21047873
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Structural Basis of Asymmetry in DNA Binding and Cleavage as Exhibited by the I-SmaMI LAGLIDADG Meganuclease.
    Shen BW; Lambert A; Walker BC; Stoddard BL; Kaiser BK
    J Mol Biol; 2016 Jan; 428(1):206-220. PubMed ID: 26705195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular scissors for in situ cellular repair.
    Prieto J; Molina R; Montoya G
    Crit Rev Biochem Mol Biol; 2012; 47(3):207-21. PubMed ID: 22283548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.