BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 2540843)

  • 1. Schiff base formation with amino acids enhances light emission and damage induced in neutrophils by phenylacetaldehyde.
    Nascimento AL; Cilento G
    Biochim Biophys Acta; 1989 Apr; 991(1):50-5. PubMed ID: 2540843
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generation of electronically excited states in situ. Polymorphonuclear leukocytes treated with phenylacetaldehyde.
    Nascimento AL; Cilento G
    Photochem Photobiol; 1987 Jul; 46(1):137-41. PubMed ID: 3039546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generation of triplet carbonyl compounds during peroxidase catalysed reactions.
    Cilento G
    J Biolumin Chemilumin; 1989 Jul; 4(1):193-9. PubMed ID: 2508435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photon emission by bacteria challenged with phenylacetaldehyde. A possible distinction between gram-positive and gram-negative bacteria.
    Surpili MJ; Faljoni-Alario A; Cilento G
    Photochem Photobiol; 1993 Mar; 57(3):564-9. PubMed ID: 8475191
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemiluminescent aerobic oxidation of protein adducts with glycolaldehyde catalyzed by horseradish peroxidase.
    de Medeiros MH; Bechara EJ
    Arch Biochem Biophys; 1986 Jul; 248(1):435-9. PubMed ID: 3729430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human neutrophils employ the myeloperoxidase-hydrogen peroxide-chloride system to convert hydroxy-amino acids into glycolaldehyde, 2-hydroxypropanal, and acrolein. A mechanism for the generation of highly reactive alpha-hydroxy and alpha,beta-unsaturated aldehydes by phagocytes at sites of inflammation.
    Anderson MM; Hazen SL; Hsu FF; Heinecke JW
    J Clin Invest; 1997 Feb; 99(3):424-32. PubMed ID: 9022075
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemiexcitation in the arachidonic acid cascade.
    Nascimento AL; Cilento G
    Photochem Photobiol; 1991 Mar; 53(3):379-84. PubMed ID: 1905821
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects induced in neutrophils by a precursor of triplet acetone.
    Escobar JA; Cilento G; Nascimento AL
    Photochem Photobiol; 1990 Jun; 51(6):713-7. PubMed ID: 2367565
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Model studies on the oxygen-induced formation of benzaldehyde from phenylacetaldehyde using pyrolysis GC-MS and FTIR.
    Chu FL; Yaylayan VA
    J Agric Food Chem; 2008 Nov; 56(22):10697-704. PubMed ID: 18954073
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generation of electronically excited triplet species at the cellular level: a potential source of genotoxicity.
    Cilento G; Nascimento AL
    Toxicol Lett; 1993 Apr; 67(1-3):17-28. PubMed ID: 8451758
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reaction of glycolaldehyde with proteins: latent crosslinking potential of alpha-hydroxyaldehydes.
    Acharya AS; Manning JM
    Proc Natl Acad Sci U S A; 1983 Jun; 80(12):3590-4. PubMed ID: 6574500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phenylacetaldehyde oxidation by freshly prepared and cryopreserved guinea pig liver slices: the role of aldehyde oxidase.
    Panoutsopoulos GI
    Int J Toxicol; 2005; 24(2):103-9. PubMed ID: 16036769
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 1-Amino-2-hydroxy-4-naphthalenesulfonic acid based Schiff bases or naphtho[1,2-d]oxazoles: selective synthesis and photophysical properties.
    Atahan A; Durmus S
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jun; 144():61-7. PubMed ID: 25748593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intracellular generation of electronically excited states. Polymorphonuclear leukocytes challenged with a precursor of triplet acetone.
    Nascimento AL; da Fonseca LM; Brunetti IL; Cilento G
    Biochim Biophys Acta; 1986 May; 881(3):337-42. PubMed ID: 3697374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A physiochemical study of excited state intramolecular proton transfer process-Luminescent chemosensor by spectroscopic investigation supported by ab initio calculations.
    Jayabharathi J; Thanikachalam V; Jayamoorthy K; Perumal MV
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Jun; 79(1):6-16. PubMed ID: 21398171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis, characterization of α-amino acid Schiff base derived Ru/Pt complexes: Induces cytotoxicity in HepG2 cell via protein binding and ROS generation.
    Alsalme A; Laeeq S; Dwivedi S; Khan MS; Al Farhan K; Musarrat J; Khan RA
    Spectrochim Acta A Mol Biomol Spectrosc; 2016 Jun; 163():1-7. PubMed ID: 27002605
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Benzaldehyde Schiff bases regulation to the metabolism, hemolysis, and virulence genes expression in vitro and their structure-microbicidal activity relationship.
    Xia L; Xia YF; Huang LR; Xiao X; Lou HY; Liu TJ; Pan WD; Luo H
    Eur J Med Chem; 2015 Jun; 97():83-93. PubMed ID: 25982329
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for an intercellular covalent reaction essential in antigen-specific T cell activation.
    Rhodes J
    J Immunol; 1989 Sep; 143(5):1482-9. PubMed ID: 2474600
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design, characterization, teratogenicity testing, antibacterial, antifungal and DNA interaction of few high spin Fe(II) Schiff base amino acid complexes.
    Abdel-Rahman LH; El-Khatib RM; Nassr LA; Abu-Dief AM; Lashin Fel-D
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Jul; 111():266-76. PubMed ID: 23665616
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fractionation and analysis of fluorescent products of lipid peroxidation.
    Trombly R; Tappel A
    Lipids; 1975 Aug; 10(8):441-7. PubMed ID: 1160518
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.