These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 25408505)

  • 21. Callose synthase (CalS5) is required for exine formation during microgametogenesis and for pollen viability in Arabidopsis.
    Dong X; Hong Z; Sivaramakrishnan M; Mahfouz M; Verma DP
    Plant J; 2005 May; 42(3):315-28. PubMed ID: 15842618
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The influence of tetrad shape and intersporal callose wall formation on pollen aperture pattern ontogeny in two eudicot species.
    Albert B; Nadot S; Dreyer L; Ressayre A
    Ann Bot; 2010 Oct; 106(4):557-64. PubMed ID: 20685726
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Assembling the thickest plant cell wall: exine development in Echinops (Asteraceae, Cynareae).
    Gabarayeva NI; Polevova SV; Grigorjeva VV; Blackmore S
    Planta; 2018 Aug; 248(2):323-346. PubMed ID: 29725817
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microspore development in Annona (Annonaceae): differences between monad and tetrad pollen.
    Lora J; Herrero M; Hormaza JI
    Am J Bot; 2014 Sep; 101(9):1508-18. PubMed ID: 25253711
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Release of developmental constraints on tetrad shape is confirmed in inaperturate pollen of Potamogeton.
    Nunes EL; Bona C; Moço MC; Coan AI
    Ann Bot; 2009 Oct; 104(5):1011-5. PubMed ID: 19567417
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mimicking pollen and spore walls: self-assembly in action.
    Gabarayeva NI; Grigorjeva VV; Shavarda AL
    Ann Bot; 2019 Jul; 123(7):1205-1218. PubMed ID: 31220198
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Two callose synthases, GSL1 and GSL5, play an essential and redundant role in plant and pollen development and in fertility.
    Enns LC; Kanaoka MM; Torii KU; Comai L; Okada K; Cleland RE
    Plant Mol Biol; 2005 Jun; 58(3):333-49. PubMed ID: 16021399
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Callose deposition analysis with special emphasis on plasmodesmata ultrastructure during megasporogenesis in Sedum (Crassulaceae).
    Brzezicka E; Kozieradzka-Kiszkurno M
    Protoplasma; 2024 Jan; 261(1):31-41. PubMed ID: 37418158
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pollen-wall formation in Arum alpinum.
    Anger EM; Weber M
    Ann Bot; 2006 Feb; 97(2):239-44. PubMed ID: 16299007
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evolutionary history of callose synthases in terrestrial plants with emphasis on proteins involved in male gametophyte development.
    Záveská Drábková L; Honys D
    PLoS One; 2017; 12(11):e0187331. PubMed ID: 29131847
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Study of male sterility in Taiwania cryptomerioides Hayata (Taxodiaceae).
    Chen SH; Chung NJ; Wang YN; Lee CL; Lee YL; Tsai PF
    Protoplasma; 2006 Aug; 228(1-3):137-44. PubMed ID: 16937067
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Temporal and spatial distribution of pectin epitopes in differentiating anthers and microspores of fertile and sterile sugar beet.
    Majewska-Sawka A; Münster A; Wisniewska E
    Plant Cell Physiol; 2004 May; 45(5):560-72. PubMed ID: 15169938
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparative exine ontogeny in some members of the family Zygophyllaceae sensu lato.
    Nasri-Ayachi MB; Nabli MA
    Protoplasma; 2006 Aug; 228(1-3):49-53. PubMed ID: 16937054
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reactive oxygen species are required for spore wall formation in
    Rabbi F; Renzaglia KS; Ashton NW; Suh DY
    Botany; 2020 Oct; 98(10):575-587. PubMed ID: 34149972
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pollen Aperture Factor INP1 Acts Late in Aperture Formation by Excluding Specific Membrane Domains from Exine Deposition.
    Dobritsa AA; Kirkpatrick AB; Reeder SH; Li P; Owen HA
    Plant Physiol; 2018 Jan; 176(1):326-339. PubMed ID: 28899962
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Ontogeny of strobili, sporangia development and sporogenesis in Equisetum giganteum (Equisetaceae) from the Colombian Andes].
    Rincón Barón EJ; Forero Ballesteros HG; Gélvez Landazábal LV; Andrés Torres G; Hilda Rolleri C
    Rev Biol Trop; 2011 Dec; 59(4):1845-58. PubMed ID: 22208097
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Formation of pollen apertures in Arabidopsis requires an interplay between male meiosis, development of INP1-decorated plasma membrane domains, and the callose wall.
    Dobritsa AA; Reeder SH
    Plant Signal Behav; 2017 Dec; 12(12):e1393136. PubMed ID: 29173018
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Deposition of callose in young ovules of two Taraxacum species varying in the mode of reproduction.
    Musiał K; Kościńska-Pająk M; Antolec R; Joachimiak AJ
    Protoplasma; 2015 Jan; 252(1):135-44. PubMed ID: 24938673
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tetrad pollen formation in quartet mutants of Arabidopsis thaliana is associated with persistence of pectic polysaccharides of the pollen mother cell wall.
    Rhee SY; Somerville CR
    Plant J; 1998 Jul; 15(1):79-88. PubMed ID: 9744097
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Role of Lipid Metabolism in Plant Pollen Exine Development.
    Zhang D; Shi J; Yang X
    Subcell Biochem; 2016; 86():315-37. PubMed ID: 27023241
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.