These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 2540874)

  • 1. The transient potassium current, the A-current, is involved in spike frequency adaptation in rat amygdala neurons.
    Gean PW; Shinnick-Gallagher P
    Brain Res; 1989 Feb; 480(1-2):160-9. PubMed ID: 2540874
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Action potential repolarization and a fast after-hyperpolarization in rat hippocampal pyramidal cells.
    Storm JF
    J Physiol; 1987 Apr; 385():733-59. PubMed ID: 2443676
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potassium currents contributing to action potential repolarization and the afterhyperpolarization in rat vagal motoneurons.
    Sah P; McLachlan EM
    J Neurophysiol; 1992 Nov; 68(5):1834-41. PubMed ID: 1336045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple potassium conductances and their role in action potential repolarization and repetitive firing behavior of neonatal rat hypoglossal motoneurons.
    Viana F; Bayliss DA; Berger AJ
    J Neurophysiol; 1993 Jun; 69(6):2150-63. PubMed ID: 8350136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ionic mechanisms of intrinsic oscillations in neurons of the basolateral amygdaloid complex.
    Pape HC; Driesang RB
    J Neurophysiol; 1998 Jan; 79(1):217-26. PubMed ID: 9425193
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of the repetitive discharge of rat CA 1 pyramidal neurones in vitro.
    Madison DV; Nicoll RA
    J Physiol; 1984 Sep; 354():319-31. PubMed ID: 6434729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ionic conductances contributing to spike repolarization and after-potentials in rat medial vestibular nucleus neurones.
    Johnston AR; MacLeod NK; Dutia MB
    J Physiol; 1994 Nov; 481 ( Pt 1)(Pt 1):61-77. PubMed ID: 7531769
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms for signal transformation in lemniscal auditory thalamus.
    Tennigkeit F; Schwarz DW; Puil E
    J Neurophysiol; 1996 Dec; 76(6):3597-608. PubMed ID: 8985860
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of voltage-sensitive Na+ and K+ currents recorded from acutely dissociated pelvic ganglion neurons of the adult rat.
    Yoshimura N; De Groat WC
    J Neurophysiol; 1996 Oct; 76(4):2508-21. PubMed ID: 8899623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Independent roles of calcium and voltage-dependent potassium currents in controlling spike frequency adaptation in lateral amygdala pyramidal neurons.
    Faber ES; Sah P
    Eur J Neurosci; 2005 Oct; 22(7):1627-35. PubMed ID: 16197503
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Muscarinic responses of rat basolateral amygdaloid neurons recorded in vitro.
    Washburn MS; Moises HC
    J Physiol; 1992 Apr; 449():121-54. PubMed ID: 1522506
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Layer I neurons of rat neocortex. I. Action potential and repetitive firing properties.
    Zhou FM; Hablitz JJ
    J Neurophysiol; 1996 Aug; 76(2):651-67. PubMed ID: 8871189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potassium currents and membrane excitability of neurons in the rat's dorsal nucleus of the lateral lemniscus.
    Fu XW; Wu SH; Brezden BL; Kelly JB
    J Neurophysiol; 1996 Aug; 76(2):1121-32. PubMed ID: 8871225
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Actions of isoproterenol on amygdalar neurons in vitro.
    Huang CC; Tsai JJ; Gean PW
    Chin J Physiol; 1994; 37(2):73-8. PubMed ID: 7875028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Voltage-gated potassium channels activated during action potentials in layer V neocortical pyramidal neurons.
    Kang J; Huguenard JR; Prince DA
    J Neurophysiol; 2000 Jan; 83(1):70-80. PubMed ID: 10634854
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Properties and ionic basis of the action potentials in the periaqueductal grey neurones of the guinea-pig.
    Sánchez D; Ribas J
    J Physiol; 1991; 440():167-87. PubMed ID: 1804959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characteristics of action potentials and their underlying outward currents in rat taste receptor cells.
    Chen Y; Sun XD; Herness S
    J Neurophysiol; 1996 Feb; 75(2):820-31. PubMed ID: 8714655
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nimodipine increases excitability of rabbit CA1 pyramidal neurons in an age- and concentration-dependent manner.
    Moyer JR; Thompson LT; Black JP; Disterhoft JF
    J Neurophysiol; 1992 Dec; 68(6):2100-9. PubMed ID: 1491260
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrophysiological properties of guinea pig trigeminal motoneurons recorded in vitro.
    Chandler SH; Hsaio CF; Inoue T; Goldberg LJ
    J Neurophysiol; 1994 Jan; 71(1):129-45. PubMed ID: 7908952
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A transient calcium-dependent potassium component of the epileptiform burst after-hyperpolarization in rat hippocampus.
    Alger BE; Williamson A
    J Physiol; 1988 May; 399():191-205. PubMed ID: 3404462
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.