These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 25409140)

  • 1. H2D(+) observations give an age of at least one million years for a cloud core forming Sun-like stars.
    Brünken S; Sipilä O; Chambers ET; Harju J; Caselli P; Asvany O; Honingh CE; Kamiński T; Menten KM; Stutzki J; Schlemmer S
    Nature; 2014 Dec; 516(7530):219-21. PubMed ID: 25409140
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deuterium enhancement in H3+ in pre-stellar cores.
    Vastel C; Phillips TG; Caselli P; Ceccarelli C; Pagani L
    Philos Trans A Math Phys Eng Sci; 2006 Nov; 364(1848):3081-90. PubMed ID: 17015376
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deuterated H3+ as a probe of isotope fractionation in star-forming regions.
    Roberts H; Millar TJ
    Philos Trans A Math Phys Eng Sci; 2006 Nov; 364(1848):3063-80; discussion 3080. PubMed ID: 17015383
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Observations and models of deuterated H3+ in proto-planetary disks.
    Ceccarelli C; Dominik C
    Philos Trans A Math Phys Eng Sci; 2006 Nov; 364(1848):3091-9; discussion 3099-100. PubMed ID: 17015395
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of giant-planet formation by rapid gas depletion around young stars.
    Zuckerman B; Forveille T; Kastner JH
    Nature; 1995 Feb; 373(6514):494-6. PubMed ID: 7845460
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon monoxide in clouds at low metallicity in the dwarf irregular galaxy WLM.
    Elmegreen BG; Rubio M; Hunter DA; Verdugo C; Brinks E; Schruba A
    Nature; 2013 Mar; 495(7442):487-9. PubMed ID: 23538829
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectral scan of Orion A and IRC+10216 from 72 to 91 GHz.
    Johansson LE; Andersson C; Ellder J; Friberg P; Hjalmarson A; Hoglund B; Irvine WM; Olofsson H; Rydbeck G
    Astron Astrophys; 1984; 130():227-56. PubMed ID: 11541988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The formation of a massive protostar through the disk accretion of gas.
    Chini R; Hoffmeister V; Kimeswenger S; Nielbock M; Nürnberger D; Schmidtobreick L; Sterzik M
    Nature; 2004 May; 429(6988):155-7. PubMed ID: 15141204
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deuterated forms of H
    Caselli P; Sipilä O; Harju J
    Philos Trans A Math Phys Eng Sci; 2019 Sep; 377(2154):20180401. PubMed ID: 31378183
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The formation of the first star in the Universe.
    Abel T; Bryan GL; Norman ML
    Science; 2002 Jan; 295(5552):93-8. PubMed ID: 11711636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using H3+ and H2D+ as probes of star-forming regions.
    van der Tak FF
    Philos Trans A Math Phys Eng Sci; 2006 Nov; 364(1848):3101-6. PubMed ID: 17015380
    [TBL] [Abstract][Full Text] [Related]  

  • 12. H2, H3+ and the age of molecular clouds and prestellar cores.
    Pagani L; Lesaffre P; Roueff E; Jorfi M; Honvault P; González-Lezana T; Faure A
    Philos Trans A Math Phys Eng Sci; 2012 Nov; 370(1978):5200-12. PubMed ID: 23028166
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using deuterated H3+ and other molecular species to understand the formation of stars and planets.
    van der Tak FF
    Philos Trans A Math Phys Eng Sci; 2012 Nov; 370(1978):5186-99. PubMed ID: 23028165
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A sensitive
    Agúndez M; Marcelino N; Cernicharo J; Roueff E; Tafalla M
    Astron Astrophys; 2019 Jul; 625():. PubMed ID: 31327870
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Star Formation in W49A: Gravitational Collapse of the Molecular Cloud Core Toward a Ring of Massive Stars.
    Welch WJ; Dreher JW; Jackson JM; Terebey S; Vogel SN
    Science; 1987 Dec; 238(4833):1550-5. PubMed ID: 17784292
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The same frequency of planets inside and outside open clusters of stars.
    Meibom S; Torres G; Fressin F; Latham DW; Rowe JF; Ciardi DR; Bryson ST; Rogers LA; Henze CE; Janes K; Barnes SA; Marcy GW; Isaacson H; Fischer DA; Howell SB; Horch EP; Jenkins JM; Schuler SC; Crepp J
    Nature; 2013 Jul; 499(7456):55-8. PubMed ID: 23803764
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Early turbulent mixing as the origin of chemical homogeneity in open star clusters.
    Feng Y; Krumholz MR
    Nature; 2014 Sep; 513(7519):523-5. PubMed ID: 25174709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of the widest binary stars from dynamical unfolding of triple systems.
    Reipurth B; Mikkola S
    Nature; 2012 Dec; 492(7428):221-4. PubMed ID: 23222523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The exclusion of a significant range of ages in a massive star cluster.
    Li C; de Grijs R; Deng L
    Nature; 2014 Dec; 516(7531):367-9. PubMed ID: 25519133
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MARVEL analysis of the rotational-vibrational states of the molecular ions H2D+ and D2H+.
    Furtenbacher T; Szidarovszky T; Fábri C; Császár AG
    Phys Chem Chem Phys; 2013 Jul; 15(25):10181-93. PubMed ID: 23670289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.